In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantization".[1] This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.

For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Etymology and discovery

The word quantum is the neuter singular of the Latin interrogative adjective quantus, meaning "how much". "Quanta", the neuter plural, short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity. However, the word quantum in general was well known before 1900.[2] It was often used by physicians, such as in the term quantum satis. Both Helmholtz and Julius von Mayer were physicians as well as physicists. Helmholtz used quantum with reference to heat in his article[3] on Mayer's work, and the word quantum can be found in the formulation of the first law of thermodynamics by Mayer in his letter[4] dated July 24, 1841.

In 1901, Max Planck used quanta to mean "quanta of matter and electricity",[5] gas, and heat.[6] In 1905, in response to Planck's work and the experimental work of Lenard (who explained his results by using the term quanta of electricity), Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta").[7]

The concept of quantization of radiation was discovered in 1900 by Max Planck, who had been trying to understand the emission of radiation from heated objects, known as black-body radiation. By assuming that energy can be absorbed or released only in tiny, differential, discrete packets (which he called "bundles", or "energy elements"),[8] Planck accounted for certain objects changing color when heated.[9] On December 14, 1900, Planck reported his findings to the German Physical Society, and introduced the idea of quantization for the first time as a part of his research on black-body radiation.[10] As a result of his experiments, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the Avogadro–Loschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918.

Quantization

While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons.[11] In the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta.[12]

See also

Elementary particle

Graviton

Introduction to quantum mechanics

Magnetic flux quantum

Photon

Photon polarization

Quantization (physics)

Quantum cellular automata

Quantum channel

Quantum cognition

Quantum coherence

Quantum chromodynamics

Quantum computer

Quantum cryptography

Quantum dot

Quantum electrodynamics

Quantum electronics

Quantum entanglement

Quantum field theory

Quantum immortality

Quantum lithography

Quantum mechanics

Quantum mind

Quantum mysticism

Quantum number

Quantum optics

Quantum sensor

Quantum state

Subatomic particle

Quantum teleportation

References

Wiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge: The Massachusetts Institute of Technology Press

E. Cobham Brewer 1810–1897. Dictionary of Phrase and Fable. 1898.

E. Helmholtz, Robert Mayer's Priorität Archived 2015-09-29 at the Wayback Machine (in German)

Herrmann, Armin (1991). "Heimatseite von Robert J. Mayer" (in German). Weltreich der Physik, GNT-Verlag. Archived from the original on 1998-02-09.

Planck, M. (1901). "Ueber die Elementarquanta der Materie und der Elektricität" (PDF). Annalen der Physik (in German). 309 (3): 564–566. Bibcode:1901AnP...309..564P. doi:10.1002/andp.19013090311.

Planck, Max (1883). "Ueber das thermodynamische Gleichgewicht von Gasgemengen". Annalen der Physik (in German). 255 (6): 358–378. Bibcode:1883AnP...255..358P. doi:10.1002/andp.18832550612.

Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607.. A partial English translation is available from Wikisource.

Max Planck (1901). "Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)". Annalen der Physik. 309 (3): 553. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310. Archived from the original on 2008-04-18.

Brown, T., LeMay, H., Bursten, B. (2008). Chemistry: The Central Science Upper Saddle River, NJ: Pearson Education ISBN 0-13-600617-5

Klein, Martin J. (1961). "Max Planck and the beginnings of the quantum theory". Archive for History of Exact Sciences. 1 (5): 459–479. doi:10.1007/BF00327765.

Melville, K. (2005, February 11). Real-World Quantum Effects Demonstrated

Modern Applied Physics-Tippens third edition; McGraw-Hill.

Further reading

B. Hoffmann, The Strange Story of the Quantum, Pelican 1963.

Lucretius, On the Nature of the Universe, transl. from the Latin by R.E. Latham, Penguin Books Ltd., Harmondsworth 1951.

J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol.1, Part 1, Springer-Verlag New York Inc., New York 1982.

M. Planck, A Survey of Physical Theory, transl. by R. Jones and D.H. Williams, Methuen & Co., Ltd., London 1925 (Dover editions 1960 and 1993) including the Nobel lecture.

Rodney, Brooks (2011) Fields of Color: The theory that escaped Einstein. Allegra Print & Imaging.

Quantum mechanics

Background

Introduction History

timeline Glossary Classical mechanics Old quantum theory

Fundamentals

Bra–ket notation Casimir effect Coherence Coherent control Complementarity Density matrix Energy level

degenerate levels excited state ground state QED vacuum QCD vacuum Vacuum state Zero-point energy Hamiltonian Heisenberg uncertainty principle Pauli exclusion principle Measurement Observable Operator Probability distribution Quantum Qubit Qutrit Scattering theory Spin Spontaneous parametric down-conversion Symmetry Symmetry breaking

Spontaneous symmetry breaking No-go theorem No-cloning theorem Von Neumann entropy Wave interference Wave function

collapse Universal wavefunction Wave–particle duality

Matter wave Wave propagation Virtual particle

Quantum

quantum coherence annealing decoherence entanglement fluctuation foam levitation noise nonlocality number realm state superposition system tunnelling Quantum vacuum state

Mathematics

Equations

Dirac Klein–Gordon Pauli Rydberg Schrödinger

Formulations

Heisenberg Interaction Matrix mechanics Path integral formulation Phase space Schrödinger

Other

Quantum

algebra calculus

differential stochastic geometry group Q-analog

List

Interpretations

Bayesian Consistent histories Cosmological Copenhagen de Broglie–Bohm Ensemble Hidden variables Many worlds Objective collapse Quantum logic Relational Stochastic Transactional

Experiments

Afshar Bell's inequality Cold Atom Laboratory Davisson–Germer Delayed-choice quantum eraser Double-slit Elitzur–Vaidman Franck–Hertz experiment Leggett–Garg inequality Mach-Zehnder inter. Popper Quantum eraser Quantum suicide and immortality Schrödinger's cat Stern–Gerlach Wheeler's delayed choice

Science

Measurement problem QBism

Quantum

biology chemistry chaos cognition complexity theory computing

Timeline cosmology dynamics economics finance foundations game theory information nanoscience metrology mind optics probability social science spacetime

Technologies

Quantum technology

links Matrix isolation Phase qubit Quantum dot

cellular automaton display laser single-photon source solar cell Quantum well

laser

Extensions

Dirac sea Fractional quantum mechanics Quantum electrodynamics

links Quantum geometry Quantum field theory

links Quantum gravity

links Quantum information science

links Quantum statistical mechanics Relativistic quantum mechanics De Broglie–Bohm theory Stochastic electrodynamics

Related

Quantum mechanics of time travel Textbooks

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License