The Cold Atom Laboratory (CAL) is an experimental instrument on board the ISS, which launched in 2018. It creates an extremely cold microgravity environment in order to study behaviour of atoms in these conditions.[1][2]

Timeline

The CAL was developed at JPL in Pasadena, California.[3] It was originally scheduled for launch to the International Space Station (ISS) in June 2017.[4] It was then delayed until a scheduled launch on a SpaceX CRS-12 rocket in August 2017.[5] It was finally launched on May 21, 2018.[2] The initial mission will have a duration of 12 months with up to five years of extended operation.[4]

In January 2020 it underwent hardware upgrades, which were carried out over an eight-day period by astronauts Christina Koch and Jessica Meir under the supervision of ground controllers.[1]

Christina Koch next to the Cold Atom Laboratory on board the ISS in January 2020

Purpose

The instrument creates extremely cold conditions in the microgravity environment of the ISS, leading to the formation of Bose Einstein Condensates that are a magnitude colder than those that are created in laboratories on Earth.[4] In a space-based laboratory, up to 10 seconds interaction times and as low as 1 picokelvin temperatures are achievable, and it could lead to exploration of unknown quantum mechanical phenomena and test some of the most fundamental laws of physics.[6][4] These experiments are best done in a freely falling environment, because it is more conducive to uninhibited formation of Bose Einstein Condensates. Ground based experiments suffer from the effect of the Condensate interacting asymmetrically with the apparatus, interfering with the time evolution of the Condensate. In orbit, experiments can last much longer because freefall is sustained indefinitely.[4] NASA's JPL scientists state that the CAL investigation could advance knowledge in the development of extremely sensitive quantum detectors, which could be used for monitoring the gravity of Earth and other planetary bodies, or for building advanced navigation devices.[4]

See also

Bose–Einstein correlations

Bose–Einstein condensation: a network theory approach

Bose–Einstein condensation of excitons

Macroscopic quantum phenomena

Macroscopic quantum self-trapping

Slow light

Timeline of low-temperature technology

References

"The Space Station's Coolest Experiment Gets Astronaut-Assisted Upgrade". NASA/JPL. Retrieved 2020-09-13.

"NASA is creating a super cold lab in space to study quantum physics/". QUARTZ. 2018-05-24. Retrieved 2018-05-24.

Elizabeth, Landau (2016-03-18). "Cold Atom Laboratory Doing Cool Research". NASA. Retrieved 2020-11-19.

"Cold Atom Laboratory". coldatomlab.jpl.nasa.gov. Retrieved 2019-08-29.

"NASA to launch Cold Atom Lab in space".

"Cold Atom Laboratory Creates Atomic Dance". NASA News. 26 September 2014. Retrieved 2015-05-21.

External links

Media related to Cold Atom Laboratory at Wikimedia Commons

Cold Atom Laboratory – Project web site at JPL

vte

States of matter (list)

State

Solid Liquid Gas / Vapor Plasma

Phase change

Low energy

Bose–Einstein condensate Fermionic condensate Degenerate matter Quantum Hall Rydberg matter Rydberg polaron Strange matter Superfluid Supersolid Photonic matter

High energy

QCD matter Lattice QCD Quark–gluon plasma Color-glass condensate Supercritical fluid

Other states

Colloid Glass Crystal Liquid crystal Time crystal Quantum spin liquid Exotic matter Programmable matter Dark matter Antimatter Magnetically ordered

Antiferromagnet Ferrimagnet Ferromagnet String-net liquid Superglass

Transitions

Boiling Boiling point Condensation Critical line Critical point Crystallization Deposition Evaporation Flash evaporation Freezing Chemical ionization Ionization Lambda point Melting Melting point Recombination Regelation Saturated fluid Sublimation Supercooling Triple point Vaporization Vitrification

Quantities

Enthalpy of fusion Enthalpy of sublimation Enthalpy of vaporization Latent heat Latent internal energy Trouton's ratio Volatility

Concepts

Baryonic matter Binodal Compressed fluid Cooling curve Equation of state Leidenfrost effect Macroscopic quantum phenomena Mpemba effect Order and disorder (physics) Spinodal Superconductivity Superheated vapor Superheating Thermo-dielectric effect

vte

Quantum mechanics

Background

Introduction History

timeline Glossary Classical mechanics Old quantum theory

Fundamentals

Bra–ket notation Casimir effect Coherence Coherent control Complementarity Density matrix Energy level

degenerate levels excited state ground state QED vacuum QCD vacuum Vacuum state Zero-point energy Hamiltonian Heisenberg uncertainty principle Pauli exclusion principle Measurement Observable Operator Probability distribution Quantum Qubit Qutrit Scattering theory Spin Spontaneous parametric down-conversion Symmetry Symmetry breaking

Spontaneous symmetry breaking No-go theorem No-cloning theorem Von Neumann entropy Wave interference Wave function

collapse Universal wavefunction Wave–particle duality

Matter wave Wave propagation Virtual particle

Quantum

quantum coherence annealing decoherence entanglement fluctuation foam levitation noise nonlocality number realm state superposition system tunnelling Quantum vacuum state

Mathematics

Equations

Dirac Klein–Gordon Pauli Rydberg Schrödinger

Formulations

Heisenberg Interaction Matrix mechanics Path integral formulation Phase space Schrödinger

Other

Quantum

algebra calculus

differential stochastic geometry group Q-analog

List

Interpretations

Bayesian Consistent histories Cosmological Copenhagen de Broglie–Bohm Ensemble Hidden variables Many worlds Objective collapse Quantum logic Relational Stochastic Transactional

Experiments

Afshar Bell's inequality Cold Atom Laboratory Davisson–Germer Delayed-choice quantum eraser Double-slit Elitzur–Vaidman Franck–Hertz experiment Leggett–Garg inequality Mach-Zehnder inter. Popper Quantum eraser Quantum suicide and immortality Schrödinger's cat Stern–Gerlach Wheeler's delayed choice

Science

Measurement problem QBism

Quantum

biology chemistry chaos cognition complexity theory computing

Timeline cosmology dynamics economics finance foundations game theory information nanoscience metrology mind optics probability social science spacetime

Technologies

Quantum technology

links Matrix isolation Phase qubit Quantum dot

cellular automaton display laser single-photon source solar cell Quantum well

laser

Extensions

Dirac sea Fractional quantum mechanics Quantum electrodynamics

links Quantum geometry Quantum field theory

links Quantum gravity

links Quantum information science

links Quantum statistical mechanics Relativistic quantum mechanics De Broglie–Bohm theory Stochastic electrodynamics

Related

Quantum mechanics of time travel Textbooks

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License