In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.[3]

The dual graviton was first hypothesized in 1980.[4] It was theoretically modeled in 2000s,[1][2] which was then predicted in eleven-dimensional mathematics of SO(8) supergravity in the framework of electric-magnetic duality.[3] It again emerged in the E11 generalized geometry in eleven dimensions,[5] and the E7 generalized vielbein-geometry in eleven dimensions.[6] While there is no local coupling between graviton and dual graviton, the field introduced by dual graviton may be coupled to a BF model as non-local gravitational fields in extra dimensions.[7]

A massive dual gravity of Ogievetsky-Polubarinov model[8] can be obtained by coupling the dual graviton field to the curl of its own energy-momentum tensor.[9][10]

The previously mentioned theories of dual graviton are in flat space. In de Sitter and anti-de Sitter spaces (A)dS, the massless dual graviton exhibits less gauge symmetries dynamics compared with those of Curtright field in flat space, hence the mixed-symmetry field propagates in more degrees of freedom.[11] However, the dual graviton in (A)dS transforms under GL(D) representation, which is identical to that of massive dual graviton in flat space.[12] This apparent paradox can be resolved using the unfolding technique in Brink, Metsaev, and Vasiliev conjecture.[13][14] For the massive dual graviton in (A)dS, the flat limit is clarified after expressing dual field in terms of the Stueckelberg coupling of a massless spin-2 field with a Proca field.[11]

Dual linearized gravity

The dual formulations of linearized gravity are described by a mixed Young symmetry tensor \( {\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }} \), the so-called dual graviton, in any spacetime dimension D > 4 with the following characters:[2][15]

\({\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }=T_{[\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}]\mu },} \)
\( {\displaystyle T_{[\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu ]}=0.} \)

where square brackets show antisymmetrization.

For 5-D spacetime, the spin-2 dual graviton is described by the Curtright field \( {\displaystyle T_{\alpha \beta \gamma }} \). The symmetry properties imply that

\( {\displaystyle T_{\alpha \beta \gamma }=T_{[\alpha \beta ]\gamma },} \)
\( {\displaystyle T_{[\alpha \beta ]\gamma }+T_{[\beta \gamma ]\alpha }+T_{[\gamma \alpha ]\beta }=0.} \)

The Lagrangian action for the spin-2 dual graviton \( {\displaystyle T_{\lambda _{1}\lambda _{2}\mu }} \) in 5-D spacetime, the Curtright field, becomes[2][15]

\( {\displaystyle {\cal {L}}_{\rm {dual}}=-{\frac {1}{12}}\left(F_{[\alpha \beta \gamma ]\delta }F^{[\alpha \beta \gamma ]\delta }-3F_{[\alpha \beta \xi ]}{}^{\xi }F^{[\alpha \beta \lambda ]}{}_{\lambda }\right),} \)

where \( {\displaystyle F_{\alpha \beta \gamma \delta }} \) is defined as

\({\displaystyle F_{[\alpha \beta \gamma ]\delta }=\partial _{\alpha }T_{[\beta \gamma ]\delta }+\partial _{\beta }T_{[\gamma \alpha ]\delta }+\partial _{\gamma }T_{[\alpha \beta ]\delta },} \)

and the gauge symmetry of the Curtright field is

\( {\displaystyle \delta _{\sigma ,\alpha }T_{[\alpha \beta ]\gamma }=2(\partial _{[\alpha }\sigma _{\beta ]\gamma }+\partial _{[\alpha }\alpha _{\beta ]\gamma }-\partial _{\gamma }\alpha _{\alpha \beta }).} \)

The dual Riemann curvature tensor of the dual graviton is defined as follows:[2]

\( {\displaystyle E_{[\alpha \beta \delta ][\varepsilon \gamma ]}\equiv {\frac {1}{2}}(\partial _{\varepsilon }F_{[\alpha \beta \delta ]\gamma }-\partial _{\gamma }F_{[\alpha \beta \delta ]\varepsilon }),} \)

and the dual Ricci curvature tensor and scalar curvature of the dual graviton become, respectively

\( {\displaystyle E_{[\alpha \beta ]\gamma }=g^{\varepsilon \delta }E_{[\alpha \beta \delta ][\varepsilon \gamma ]},} \)
\( {\displaystyle E_{\alpha }=g^{\beta \gamma }E_{[\alpha \beta ]\gamma }.} \)

They fulfill the following Bianchi identities

\( {\displaystyle \partial _{\alpha }(E^{[\alpha \beta ]\gamma }+g^{\gamma [\alpha }E^{\beta ]})=0,} \)

where \( g^{\alpha\beta} \) is the 5-D spacetime metric.
Massive dual gravity

In 4-D, the Lagrangian of the spinless massive version of the dual gravity is

\( {\displaystyle {\mathcal {L_{\rm {dual,massive}}^{\rm {spinless}}}}=-{\frac {1}{2}}u+{\frac {1}{2}}(v-gu)^{2}+{\frac {1}{3}}g(v-gu)^{3}\sideset {_{3}}{_{2}}F(1,{\frac {1}{2}},{\frac {3}{2}};2,{\frac {5}{2}};-4g^{2}(v-gu)^{2}),} \)

where \( {\displaystyle V^{\mu }={\frac {1}{6}}\epsilon ^{\mu \alpha \beta \gamma }V_{\alpha \beta \gamma }~,v=V_{\mu }V^{\mu }{\text{and}}~u=\partial _{\mu }V^{\mu }.} \) [16] The coupling constant \({\displaystyle g/m} \) appears in the equation of motion to couple the trace of the conformally improved energy momentum tensor \( \theta \) to the field as in the following equation

\( {\displaystyle \left(\Box +m^{2}\right)V_{\mu }={\frac {g}{m}}\partial _{\mu }\theta .} \)

And for the spin-2 massive dual gravity in 4-D,[10] the Lagrangian is formulated in terms of the Hessian matrix that also constitutes Horndeski theory (Galileons/massive gravity) through det \( {\displaystyle {\text{det}}(\delta _{\nu }^{\mu }+{\frac {g}{m}}K_{\nu }^{\mu })=1-{\frac {1}{2}}(g/m)^{2}K_{\alpha }^{\beta }K_{\beta }^{\alpha }+{\frac {1}{3}}(g/m)^{3}K_{\alpha }^{\beta }K_{\beta }^{\gamma }K_{\gamma }^{\alpha }+{\frac {1}{8}}(g/m)^{4}\left[(K_{\alpha }^{\beta }K_{\beta }^{\alpha })^{2}-2K_{\alpha }^{\beta }K_{\beta }^{\gamma }K_{\gamma }^{\delta }K_{\delta }^{\alpha }\right],} \)

where \( {\displaystyle K_{\mu }^{\nu }=3\partial _{\alpha }T_{[\beta \gamma ]\mu }\epsilon ^{\alpha \beta \gamma \nu }}. \)

So the zeroth interaction part, i.e., the third term in the Lagrangian, can be read as \( {\displaystyle K_{\alpha }^{\beta }\theta _{\beta }^{\alpha }} \)so the equation of motion becomes

\({\displaystyle \left(\Box +m^{2}\right)T_{[\alpha \beta ]\gamma }={\frac {g}{m}}P_{\alpha \beta \gamma ,\lambda \mu \nu }\partial ^{\lambda }\theta ^{\mu \nu },} \)

where the \( {\displaystyle P_{\alpha \beta \gamma ,\lambda \mu \nu }=2\epsilon _{\alpha \beta \lambda \mu }\eta _{\gamma \nu }+\epsilon _{\alpha \gamma \lambda \mu }\eta _{\beta \nu }-\epsilon _{\beta \gamma \lambda \mu }\eta _{\alpha \nu }} \) is Young symmetrizer of such SO(2) theory.

For solutions of the massive theory in arbitrary N-D, i.e., Curtright field \( {\displaystyle T_{[\lambda _{1}\lambda _{2}...\lambda _{N-3}]\mu }} \), the symmetrizer becomes that of SO(N-2).[9]
Dual graviton coupling with BF theory

Dual gravitons have interaction with topological BF model in D = 5 through the following Lagrangian action[7]

\( {\displaystyle S_{\rm {L}}=\int d^{5}x({\cal {L}}_{\rm {dual}}+{\cal {L}}_{\rm {BF}}).} \)


\( {\displaystyle {\cal {L}}_{\rm {BF}}=Tr[\mathbf {B} \wedge \mathbf {F} ]} \)

Here, F\( {\displaystyle \mathbf {F} \equiv d\mathbf {A} \sim R_{ab}} \) is the curvature form, and \( {\displaystyle \mathbf {B} \equiv e^{a}\wedge e^{b}} \) is the background field.

In principle, it should similarly be coupled to a BF model of gravity as the linearized Einstein–Hilbert action in D > 4:

\( {\displaystyle S_{\rm {BF}}=\int d^{5}x{\cal {L}}_{\rm {BF}}\sim S_{\rm {EH}}={1 \over 2}\int \mathrm {d} ^{5}xR{\sqrt {-g}}.} \)

where \( g=\det(g_{\mu \nu }) \) is the determinant of the metric tensor matrix, and R is the Ricci scalar.
Dual gravitoelectromagnetism

In similar manner while we define gravitomagnetic and gravitoelectic for the graviton, we can define electric and magnetic fields for the dual graviton.[17] There are the following relation between the gravitoelectic field \( {\displaystyle E_{ab}[h_{ab}]} \) and gravitomagnetic field \( {\displaystyle B_{ab}[h_{ab}]} \) of the graviton \( h_{{ab}} \) and the gravitoelectic field\( {\displaystyle E_{ab}[T_{abc}]} \) and gravitomagnetic field \( {\displaystyle B_{ab}[T_{abc}]} \) of the dual graviton \({\displaystyle T_{abc}} \):[18][15]

\( {\displaystyle B_{ab}[T_{abc}]=E_{ab}[h_{ab}]} \)
\( {\displaystyle E_{ab}[T_{abc}]=-B_{ab}[h_{ab}]} \)

and scalar curvature R with dual scalar curvature E:[18]

\( {\displaystyle E=\star R} \)
\( {\displaystyle R=-\star E} \)

where \( \star \) denotes the Hodge dual.
Dual graviton in conformal gravity

The free (4,0) conformal gravity in D = 6 is defined as

\( {\displaystyle {\mathcal {S}}=\int \mathrm {d} ^{6}x{\sqrt {-g}}C_{ABCD}C^{ABCD},} \)

where \( {\displaystyle C_{ABCD}} \) is the Weyl tensor in D = 6. The free (4,0) conformal gravity can be reduced to the graviton in the ordinary space, and the dual graviton in the dual space in D = 4.[19]

It is easy to notice the similarity between the Lanczos tensor, that generates the Weyl tensor in geometric theories of gravity, and Curtright tensor, particularly their shared symmetry properties of the linearized spin connection in Einstein's theory. However, Lanczos tensor is a tensor of geometry in D=4,[20] meanwhile Curtright tensor is a field tensor in arbitrary dimensions.
See also

Curtright field
Taub–NUT space
Kaluza-Klein monopole
Nielsen-Olesen vortex
't Hooft loop
Dual photon
Massive gravity
Horndeski's theory


Hull, C. M. (2001). "Duality in Gravity and Higher Spin Gauge Fields". Journal of High Energy Physics. 2001 (9): 27. arXiv:hep-th/0107149. Bibcode:2001JHEP...09..027H. doi:10.1088/1126-6708/2001/09/027.
Bekaert, X.; Boulanger, N.; Henneaux, M. (2003). "Consistent deformations of dual formulations of linearized gravity: A no-go result". Physical Review D. 67 (4): 044010. arXiv:hep-th/0210278. Bibcode:2003PhRvD..67d4010B. doi:10.1103/PhysRevD.67.044010.
de Wit, B.; Nicolai, H. (2013). "Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions". Journal of High Energy Physics. 2013 (5): 77. arXiv:1302.6219. Bibcode:2013JHEP...05..077D. doi:10.1007/JHEP05(2013)077.
Curtright, T. (1985). "Generalised Gauge Fields". Physics Letters B. 165 (4–6): 304. Bibcode:1985PhLB..165..304C. doi:10.1016/0370-2693(85)91235-3.
West, P. (2012). "Generalised geometry, eleven dimensions and E11". Journal of High Energy Physics. 2012 (2): 18. arXiv:1111.1642. Bibcode:2012JHEP...02..018W. doi:10.1007/JHEP02(2012)018.
Godazgar, H.; Godazgar, M.; Nicolai, H. (2014). "Generalised geometry from the ground up". Journal of High Energy Physics. 2014 (2): 75. arXiv:1307.8295. Bibcode:2014JHEP...02..075G. doi:10.1007/JHEP02(2014)075.
Bizdadea, C.; Cioroianu, E. M.; Danehkar, A.; Iordache, M.; Saliu, S. O.; Sararu, S. C. (2009). "Consistent interactions of dual linearized gravity in D = 5: couplings with a topological BF model". European Physical Journal C. 63 (3): 491–519. arXiv:0908.2169. Bibcode:2009EPJC...63..491B. doi:10.1140/epjc/s10052-009-1105-0.
Ogievetsky, V. I; Polubarinov, I. V (1965-11-01). "Interacting field of spin 2 and the einstein equations". Annals of Physics. 35 (2): 167–208. Bibcode:1965AnPhy..35..167O. doi:10.1016/0003-4916(65)90077-1. ISSN 0003-4916.
Alshal, H.; Curtright, T. L. (2019-09-10). "Massive dual gravity in N spacetime dimensions". Journal of High Energy Physics. 2019 (9): 63. arXiv:1907.11537. Bibcode:2019JHEP...09..063A. doi:10.1007/JHEP09(2019)063. ISSN 1029-8479.
Curtright, T. L.; Alshal, H. (2019-10-01). "Massive dual spin 2 revisited". Nuclear Physics B. 948: 114777. arXiv:1907.11532. Bibcode:2019NuPhB.94814777C. doi:10.1016/j.nuclphysb.2019.114777. ISSN 0550-3213.
Boulanger, N.; Campoleoni, A.; Cortese, I. (July 2018). "Dual actions for massless, partially-massless and massive gravitons in (A)dS". Physics Letters B. 782: 285–290. arXiv:1804.05588. Bibcode:2018PhLB..782..285B. doi:10.1016/j.physletb.2018.05.046.
Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (2016-06-21). "Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS". Physical Review D. 93 (12): 124047. arXiv:1512.09060. Bibcode:2016PhRvD..93l4047B. doi:10.1103/PhysRevD.93.124047. ISSN 2470-0010.
Brink, L.; Metsaev, R.R.; Vasiliev, M.A. (October 2000). "How massless are massless fields in AdS". Nuclear Physics B. 586 (1–2): 183–205. arXiv:hep-th/0005136. Bibcode:2000NuPhB.586..183B. doi:10.1016/S0550-3213(00)00402-8.
Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (May 2017). "Mixed-symmetry fields in de Sitter space: a group theoretical glance". Journal of High Energy Physics. 2017 (5): 81. arXiv:1612.08166. Bibcode:2017JHEP...05..081B. doi:10.1007/JHEP05(2017)081. ISSN 1029-8479.
Danehkar, A. (2019). "Electric-magnetic duality in gravity and higher-spin fields". Frontiers in Physics. 6: 146. Bibcode:2019FrP.....6..146D. doi:10.3389/fphy.2018.00146.
Curtright, Thomas L. (2019-10-01). "Massive dual spinless fields revisited". Nuclear Physics B. 948: 114784. arXiv:1907.11530. Bibcode:2019NuPhB.94814784C. doi:10.1016/j.nuclphysb.2019.114784. ISSN 0550-3213.
Henneaux, M.; Teitelboim, C. (2005). "Duality in linearized gravity". Physical Review D. 71 (2): 024018. arXiv:gr-qc/0408101. Bibcode:2005PhRvD..71b4018H. doi:10.1103/PhysRevD.71.024018.
Henneaux, M., "E10 and gravitational duality"
Hull, C. M. (2000). "Symmetries and Compactifications of (4,0) Conformal Gravity". Journal of High Energy Physics. 2000 (12): 007. arXiv:hep-th/0011215. Bibcode:2000JHEP...12..007H. doi:10.1088/1126-6708/2000/12/007.

Bampi, Franco; Caviglia, Giacomo (April 1983). "Third-order tensor potentials for the Riemann and Weyl tensors". General Relativity and Gravitation. 15 (4): 375–386. Bibcode:1983GReGr..15..375B. doi:10.1007/BF00759166. ISSN 0001-7701.


Particles in physics

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)


Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino


Photon Gluon W and Z bosons


Higgs boson

Ghost fields

Faddeev–Popov ghosts


Gluino Gravitino Photino


Axino Chargino Higgsino Neutralino Sfermion (Stop squark)


Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons


Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon


Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark


Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules


Hexaquark Heptaquark Skyrmion


Glueball Theta meson T meson


Mesonic molecule Pomeron Diquark R-hadron


Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion


Baryons Mesons Particles Quasiparticles Timeline of particle discoveries


History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks


Quantum gravity
Central concepts

AdS/CFT correspondence Ryu-Takayanagi Conjecture Causal patch Gravitational anomaly Graviton Holographic principle IR/UV mixing Planck scale Quantum foam Trans-Planckian problem Weinberg–Witten theorem Faddeev-Popov ghost

Toy models

2+1D topological gravity CGHS model Jackiw–Teitelboim gravity Liouville gravity RST model Topological quantum field theory

Quantum field theory in curved spacetime

Bunch–Davies vacuum Hawking radiation Semiclassical gravity Unruh effect

Black holes

Black hole complementarity Black hole information paradox Black-hole thermodynamics Bousso's holographic bound ER=EPR Firewall (physics) Gravitational singularity

String theory

Bosonic string theory M-theory Supergravity Superstring theory

Canonical quantum gravity

Loop quantum gravity Wheeler–DeWitt equation

Euclidean quantum gravity

Hartle–Hawking state


Causal dynamical triangulation Causal sets Noncommutative geometry Spin foam Group field theory Superfluid vacuum theory Twistor theory Dual graviton


Quantum cosmology
Eternal inflation Multiverse FRW/CFT duality


String theory

Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape



Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism

String duality

T-duality S-duality U-duality Montonen–Olive duality

Particles and fields

Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon


D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition

Conformal field theory

Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model

Gauge theory

Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics


Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory


Supergravity Superspace Lie superalgebra Lie supergroup


Holographic principle AdS/CFT correspondence


Matrix theory Introduction to M-theory

String theorists

Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License