In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have the maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection.

Type IIA string theory

At low energies, type IIA string theory is described by type IIA supergravity in ten dimensions which is a non-chiral theory (i.e. left–right symmetric) with (1,1) d=10 supersymmetry; the fact that the anomalies in this theory cancel is therefore trivial.

In the 1990s it was realized by Edward Witten (building on previous insights by Michael Duff, Paul Townsend, and others) that the limit of type IIA string theory in which the string coupling goes to infinity becomes a new 11-dimensional theory called M-theory.[1]

The mathematical treatment of type IIA string theory belongs to symplectic topology and algebraic geometry, particularly Gromov–Witten invariants.

Type IIB string theory

At low energies, type IIB string theory is described by type IIB supergravity in ten dimensions which is a chiral theory (left–right asymmetric) with (2,0) d=10 supersymmetry; the fact that the anomalies in this theory cancel is therefore nontrivial.

In the 1990s it was realized that type IIB string theory with the string coupling constant g is equivalent to the same theory with the coupling 1/g. This equivalence is known as S-duality.

Orientifold of type IIB string theory leads to type I string theory.

The mathematical treatment of type IIB string theory belongs to algebraic geometry, specifically the deformation theory of complex structures originally studied by Kunihiko Kodaira and Donald C. Spencer.

In 1997 Juan Maldacena gave some arguments indicating that type IIB string theory is equivalent to N = 4 supersymmetric Yang–Mills theory in the 't Hooft limit; it was the first suggestion concerning the AdS/CFT correspondence.[2]

Relationship between the type II theories

In the late 1980s, it was realized that type IIA string theory is related to type IIB string theory by T-duality.

See also

Superstring theory

Type I string

Heterotic string

References

Duff, Michael (1998). "The theory formerly known as strings". Scientific American. 278 (2): 64–9. Bibcode:1998SciAm.278b..64D. doi:10.1038/scientificamerican0298-64.

J. Maldacena, "The Large N Limit of Superconformal Field Theories and Supergravity" arXiv:hep-th/9711200

String theory

Background

Strings History of string theory

First superstring revolution Second superstring revolution String theory landscape

Calabi-Yau-alternate

Theory

Nambu–Goto action Polyakov action Bosonic string theory Superstring theory

Type I string Type II string

Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism

String duality

T-duality S-duality U-duality Montonen–Olive duality

Particles and fields

Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon

Branes

D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition

Conformal field theory

Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model

Gauge theory

Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics

Geometry

Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold

Calabi–Yau manifold Hyperkähler manifold

K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory

Supergravity Superspace Lie superalgebra Lie supergroup

Holography

Holographic principle AdS/CFT correspondence

M-theory

Matrix theory Introduction to M-theory

String theorists

Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License