- Art Gallery -

In particle physics, the hypothetical dilaton particle is a particle of a scalar field \( \phi \) that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field \( \phi \) and the associated particle is the dilaton.

Exposition

In Kaluza–Klein theories, after dimensional reduction, the effective Planck mass varies as some power of the volume of compactified space. This is why volume can turn out as a dilaton in the lower-dimensional effective theory.

Although string theory naturally incorporates Kaluza–Klein theory that first introduced the dilaton, perturbative string theories such as type I string theory, type II string theory, and heterotic string theory already contain the dilaton in the maximal number of 10 dimensions. However, M-theory in 11 dimensions does not include the dilaton in its spectrum unless compactified. The dilaton in type IIA string theory parallels the radion of M-theory compactified over a circle, and the dilaton in E8 × E8 string theory parallels the radion for the Hořava–Witten model. (For more on the M-theory origin of the dilaton, see [1]).

In string theory there is also a dilaton in the worldsheet CFT - two-dimensional conformal field theory. The exponential of its vacuum expectation value determines the coupling constant g and the Euler characteristic χ = 2 − 2g as ∫R = 2πχ for compact worldsheets by the Gauss–Bonnet theorem, where the genus g counts the number of handles and thus the number of loops or string interactions described by a specific worldsheet.

\( g = \exp(\langle \phi \rangle) \)

Therefore, the dynamic variable coupling constant in string theory contrasts the quantum field theory where it is constant. As long as supersymmetry is unbroken, such scalar fields can take arbitrary values moduli). However, supersymmetry breaking usually creates a potential energy for the scalar fields and the scalar fields localize near a minimum whose position should in principle calculate in string theory.

The dilaton acts like a Brans–Dicke scalar, with the effective Planck scale depending upon both the string scale and the dilaton field.

In supersymmetry the superpartner of the dilaton or here the dilatino, combines with the axion to form a complex scalar field .
The dilaton in quantum gravity

The dilaton made its first appearance in Kaluza–Klein theory, a five-dimensional theory that combined gravitation and electromagnetism. It appears in string theory. However, it has become central to the lower-dimensional many-bodied gravity problem[2] based on the field theoretic approach of Roman Jackiw. The impetus arose from the fact that complete analytical solutions for the metric of a covariant N-body system have proven elusive in general relativity. To simplify the problem, the number of dimensions was lowered to 1+1 - one spatial dimension and one temporal dimension. This model problem, known as R=T theory,[3] as opposed to the general G=T theory, was amenable to exact solutions in terms of a generalization of the Lambert W function. Also, the field equation governing the dilaton, derived from differential geometry, as the Schrödinger equation could be amenable to quantization.[4]

This combines gravity, quantization, and even the electromagnetic interaction, promising ingredients of a fundamental physical theory. This outcome revealed a previously unknown and already existing natural link between general relativity and quantum mechanics. There lacks clarity in the generalization of this theory to 3+1 dimensions. However, a recent derivation in 3+1 dimensions under the right coordinate conditions yields a formulation similar to the earlier 1+1, a dilaton field governed by the logarithmic Schrödinger equation[5] that is seen in condensed matter physics and superfluids. The field equations are amenable to such a generalization, as shown with the inclusion of a one-graviton process,[6] and yield the correct Newtonian limit in d dimensions, but only with a dilaton. Furthermore, some speculate on the view of the apparent resemblance between the dilaton and the Higgs boson.[7] However, there needs more experimentation to resolve the relationship between these two particles. Finally, since this theory can combine gravitational, electromagnetic, and quantum effects, their coupling could potentially lead to a means of testing the theory through cosmology and experimentation.
Dilaton action

The dilaton-gravity action is

\( \int d^Dx \sqrt{-g} \left[ \frac{1}{2\kappa} \left( \Phi R - \omega\left[ \Phi \right]\frac{g^{\mu\nu}\partial_\mu \Phi \partial_\nu \Phi}{\Phi} \right) - V[\Phi] \right]. \)

This is more general than Brans–Dicke in vacuum in that we have a dilaton potential.
See also

CGHS model
R=T model
Quantum gravity

Citations

David S. Berman, Malcolm J. Perry (2006), "M-theory and the string genus expansion"
Ohta, Tadayuki; Mann, Robert (1996). "Canonical reduction of two-dimensional gravity for particle dynamics". Classical and Quantum Gravity. 13 (9): 2585–2602.arXiv:gr-qc/9605004. Bibcode:1996CQGra..13.2585O. doi:10.1088/0264-9381/13/9/022.
Sikkema, A E; Mann, R B (1991). "Gravitation and cosmology in (1+1) dimensions". Classical and Quantum Gravity. 8 (1): 219–235. Bibcode:1991CQGra...8..219S. doi:10.1088/0264-9381/8/1/022.
Farrugia; Mann; Scott (2007). "N-body Gravity and the Schroedinger Equation". Classical and Quantum Gravity. 24 (18): 4647–4659. arXiv:gr-qc/0611144. Bibcode:2007CQGra..24.4647F. doi:10.1088/0264-9381/24/18/006.
Scott, T.C.; Zhang, Xiangdong; Mann, Robert; Fee, G.J. (2016). "Canonical reduction for dilatonic gravity in 3 + 1 dimensions". Physical Review D. 93 (8): 084017. arXiv:1605.03431. Bibcode:2016PhRvD..93h4017S. doi:10.1103/PhysRevD.93.084017.
Mann, R B; Ohta, T (1997). "Exact solution for the metric and the motion of two bodies in (1+1)-dimensional gravity". Physical Review D. 55 (8): 4723–4747. arXiv:gr-qc/9611008. Bibcode:1997PhRvD..55.4723M. doi:10.1103/PhysRevD.55.4723.

Bellazzini, B.; Csaki, C.; Hubisz, J.; Serra, J.; Terning, J. (2013). "A higgs-like dilaton". Eur. Phys. J. C. 73 (2): 2333.arXiv:1209.3299. Bibcode:2013EPJC...73.2333B. doi:10.1140/epjc/s10052-013-2333-x.

References

Fujii, Y. (2003). "Mass of the dilaton and the cosmological constant". Prog. Theor. Phys. 110 (3): 433–439.arXiv:gr-qc/0212030. Bibcode:2003PThPh.110..433F. doi:10.1143/PTP.110.433.
Hayashi, M.; Watanabe, T.; Aizawa, I.; Aketo, K. (2003). "Dilatonic Inflation and SUSY Breaking in String-inspired Supergravity". Modern Physics Letters A. 18 (39): 2785–2793. arXiv:hep-ph/0303029. Bibcode:2003MPLA...18.2785H. doi:10.1142/S0217732303012465.
Alvarenge, F.; Batista, A.; Fabris, J. (2005). "Does Quantum Cosmology Predict a Constant Dilatonic Field". International Journal of Modern Physics D. 14 (2): 291–307.arXiv:gr-qc/0404034. Bibcode:2005IJMPD..14..291A. doi:10.1142/S0218271805005955.
Lu, H.; Huang, Z.; Fang, W.; Zhang, K. (2004). "Dark Energy and Dilaton Cosmology". arXiv:hep-th/0409309.
Wesson, Paul S. (1999). Space-Time-Matter, Modern Kaluza-Klein Theory. Singapore: World Scientific. p. 31. ISBN 978-981-02-3588-8.

vte

String theory
Background

Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape


Calabi-Yau-alternate

Theory

Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism

String duality

T-duality S-duality U-duality Montonen–Olive duality

Particles and fields

Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon

Branes

D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition

Conformal field theory

Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model

Gauge theory

Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics

Geometry

Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory

Supersymmetry

Supergravity Superspace Lie superalgebra Lie supergroup

Holography

Holographic principle AdS/CFT correspondence

M-theory

Matrix theory Introduction to M-theory

String theorists

Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach

vte

Particles in physics
Elementary
Fermions
Quarks

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)

Leptons

Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino

Bosons
Gauge

Photon Gluon W and Z bosons

Scalar

Higgs boson

Ghost fields

Faddeev–Popov ghosts

Hypothetical
Superpartners
Gauginos

Gluino Gravitino Photino

Others

Axino Chargino Higgsino Neutralino Sfermion (Stop squark)

Others

Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons

Composite
Hadrons
Baryons

Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon

Mesons

Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark

Others

Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules

Hypothetical
Baryons

Hexaquark Heptaquark Skyrmion

Mesons

Glueball Theta meson T meson

Others

Mesonic molecule Pomeron Diquark R-hadron

Quasiparticles

Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion

Lists

Baryons Mesons Particles Quasiparticles Timeline of particle discoveries

Related

History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

vte

Theories of gravitation
Standard
Newtonian gravity (NG)

Newton's law of universal gravitation Gauss's law for gravity Poisson's equation for gravity History of gravitational theory

General relativity (GR)

Introduction History Mathematics Exact solutions Resources Tests Post-Newtonian formalism Linearized gravity ADM formalism Gibbons–Hawking–York boundary term

Alternatives to
general relativity
Paradigms

Classical theories of gravitation Quantum gravity Theory of everything

Classical

Einstein–Cartan Bimetric theories Gauge theory gravity Teleparallelism Composite gravity f(R) gravity Infinite derivative gravity Massive gravity Modified Newtonian dynamics, MOND
AQUAL Tensor–vector–scalar Nonsymmetric gravitation Scalar–tensor theories
Brans–Dicke Scalar–tensor–vector Conformal gravity Scalar theories
Nordström Whitehead Geometrodynamics Induced gravity Chameleon Pressuron Degenerate Higher-Order Scalar-Tensor theories

Quantum-mechanical

Unified-field-theoric

Kaluza–Klein theory
Dilaton Supergravity

Unified-field-theoric and
quantum-mechanical

Noncommutative geometry Semiclassical gravity Superfluid vacuum theory
Logarithmic BEC vacuum String theory
M-theory F-theory Heterotic string theory Type I string theory Type 0 string theory Bosonic string theory Type II string theory Little string theory Twistor theory
Twistor string theory

Generalisations /
extensions of GR

Liouville gravity Lovelock theory (2+1)-dimensional topological gravity Gauss–Bonnet gravity Jackiw–Teitelboim gravity

Pre-Newtonian
theories and
toy models

Aristotelian physics CGHS model RST model Mechanical explanations
Fatio–Le Sage Entropic gravity Gravitational interaction of antimatter Physics in the medieval Islamic world Theory of impetus

Related topics

Graviton

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License