- Art Gallery -

In particle physics, a diquark, or diquark correlation/clustering, is a hypothetical state of two quarks grouped inside a baryon (that consists of three quarks) (Lichtenberg 1982). Corresponding models of baryons are referred to as quark–diquark models. The diquark is often treated as a single subatomic particle with which the third quark interacts via the strong interaction. The existence of diquarks inside the nucleons is a disputed issue, but it helps to explain some nucleon properties and to reproduce experimental data sensitive to the nucleon structure. Diquark–antidiquark pairs have also been advanced for anomalous particles such as the X(3872).[1][2]


The forces between the two quarks in a diquark is attractive when both the colors and spins are antisymmetric. When both quarks are correlated in this way they tend to form a very low energy configuration. This low energy configuration has become known as a diquark.[3]

Many scientists theorize that a diquark should not be considered a particle. Even though they may contain two quarks they are not colour neutral, and therefore cannot exist as isolated bound states. So instead they tend to float freely inside hadrons as composite entities; while free-floating they have a size of about 1 fm. This also happens to be the same size as the hadron itself.

Diquarks are the conceptual building blocks, and as such give scientists an ordering principle for the most important states in the hadronic spectrum. There are many different pieces of evidence that prove diquarks are fundamental in the structure of hadrons. One of the most compelling pieces of evidence comes from a recent study of baryons. In this study the baryon had one heavy and two light quarks. Since the heavy quark is inert, the scientists were able to discern the properties of the different quark configurations in the hadronic spectrum.
Λ and Σ baryon experiment

An experiment was conducted using diquarks in an attempt to study the Λ and Σ baryons that are produced in the creation of hadrons created by fast-moving quarks. In the experiment the quarks ionized the vacuum area. This produced the quark–antiquark pairs, which then converted themselves into mesons. When generating a baryon by assembling quarks, it is helpful if the quarks first form a stable two-quark state. The Λ and the Σ are created as a result of up, down and strange quarks. Scientists found that the Λ contains the [ud] diquark, however the Σ does not. From this experiment scientists inferred that Λ baryons are more common than Σ baryons, and indeed they are more common by a factor of 10.

Ali, Ahmed; Maiani, Luciano; Polosa, Antonio D. (2019). Multiquark Hadrons. Cambridge University Press. p. 152. ISBN 978-1-107-17158-9. Retrieved 23 June 2020.
Peloso, Marco (2008). Continuous Advances In Qcd 2008 - Proceedings Of The Conference. World Scientific. p. 63. ISBN 978-981-4468-76-3. Retrieved 23 June 2020.

Montagna, G.; Nicrosini, O.; Vercesi, V. (2007). IFAE 2006: Incontri di Fisica delle Alte Energie - Italian Meeting on High Energy Physics - Pavia, Italy, 19-21 April 2006. Springer Science & Business Media. p. 52. ISBN 978-88-470-0530-3. Retrieved 23 June 2020.

Further reading

D. B. Lichtenberg; W. Namgung; E. Predazzi; J. G. Wills (1982). "Baryon Masses In A Relativistic Quark-Diquark Model". Physical Review Letters. 48 (24): 1653–1656. Bibcode:1982PhRvL..48.1653L. doi:10.1103/PhysRevLett.48.1653.
R. Rapp; T. Schëfer; E. Shuryak; M. Velkovsky (1998). "Diquark bose condensates in high density matter and instantons". Physical Review Letters. 81 (1): 53–56. arXiv:hep-ph/9711396. Bibcode:1998PhRvL..81...53R. doi:10.1103/PhysRevLett.81.53. S2CID 89610959.


Particles in physics

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)


Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino


Photon Gluon W and Z bosons


Higgs boson

Ghost fields

Faddeev–Popov ghosts


Gluino Gravitino Photino


Axino Chargino Higgsino Neutralino Sfermion (Stop squark)


Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons


Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon


Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark


Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules


Hexaquark Heptaquark Skyrmion


Glueball Theta meson T meson


Mesonic molecule Pomeron Diquark R-hadron


Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion


Baryons Mesons Particles Quasiparticles Timeline of particle discoveries


History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License