- Art Gallery -

The charm quark, charmed quark or c quark (from its symbol, c) is the third most massive of all quarks, a type of elementary particle. Charm quarks are found in hadrons, which are subatomic particles made of quarks. Examples of hadrons containing charm quarks include the J/ψ meson (J/ψ), D mesons (D), charmed Sigma baryons (Σc), and other charmed particles.

It, along with the strange quark is part of the second generation of matter, and has an electric charge of +2/3 e and a bare mass of 1.275+0.025
−0.035 GeV/c2.[1] Like all quarks, the charm quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the charm quark is the charm antiquark (sometimes called anticharm quark or simply anticharm), which differs from it only in that some of its properties have equal magnitude but opposite sign.

The existence of a fourth quark had been speculated by a number of authors around 1964 (for instance by James Bjorken and Sheldon Glashow[4]), but its prediction is usually credited to Sheldon Glashow, John Iliopoulos and Luciano Maiani in 1970 (see GIM mechanism).[5] The first charmed particle (a particle containing a charm quark) to be discovered was the J/ψ meson. It was discovered in 1974 by a team at the Stanford Linear Accelerator Center (SLAC), led by Burton Richter,[6] and one at the Brookhaven National Laboratory (BNL), led by Samuel Ting.[7]

The 1974 discovery of the J/ψ (and thus the charm quark) ushered in a series of breakthroughs which are collectively known as the November Revolution.


Hadrons containing charm quarks
For a more comprehensive list, see List of baryons and list of mesons.

Some of the hadrons containing charm quarks include:

D mesons contain a charm quark (or its antiparticle) and an up or down quark.

D s mesons contain a charm quark and a strange quark.
There are many charmonium states, for example the J/ψ particle. These consist of a charm quark and its antiparticle.
Charmed baryons have been observed, and are named in analogy with strange baryons (e.g. Λ+ c).

See also

Quark model

References

M. Tanabashi et al. (Particle Data Group) (2018). "Review of Particle Physics". Physical Review D. 98 (3): 030001. Bibcode:2018PhRvD..98c0001T. doi:10.1103/PhysRevD.98.030001.
R. Nave. "Transformation of Quark Flavors by the Weak Interaction". Retrieved 2010-12-06. "The c quark has about 5% probability of decaying into a d quark instead of an s quark."
K. Nakamura et al. (Particle Data Group); et al. (2010). "Review of Particles Physics: The CKM Quark-Mixing Matrix" (PDF). Journal of Physics G. 37 (75021): 150. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7a/075021.
B.J. Bjorken, S.L. Glashow; Glashow (1964). "Elementary particles and SU(4)". Physics Letters. 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0.
S.L. Glashow, J. Iliopoulos, L. Maiani; Iliopoulos; Maiani (1970). "Weak Interactions with Lepton–Hadron Symmetry". Physical Review D. 2 (7): 1285–1292. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285.
J.-E. Augustin; et al. (1974). "Discovery of a Narrow Resonance in e+e− Annihilation". Physical Review Letters. 33 (23): 1406. Bibcode:1974PhRvL..33.1406A. doi:10.1103/PhysRevLett.33.1406.

J.J. Aubert; et al. (1974). "Experimental Observation of a Heavy Particle J". Physical Review Letters. 33 (23): 1404. Bibcode:1974PhRvL..33.1404A. doi:10.1103/PhysRevLett.33.1404.

Further reading
R. Nave. "Quarks". HyperPhysics. Georgia State University, Department of Physics and Astronomy. Retrieved 2008-06-29.
A. Pickering (1984). Constructing Quarks. University of Chicago Press. pp. 114–125. ISBN 978-0-226-66799-7.

vte

Particles in physics
Elementary
Fermions
Quarks

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)

Leptons

Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino

Bosons
Gauge

Photon Gluon W and Z bosons

Scalar

Higgs boson

Ghost fields

Faddeev–Popov ghosts

Hypothetical
Superpartners
Gauginos

Gluino Gravitino Photino

Others

Axino Chargino Higgsino Neutralino Sfermion (Stop squark)

Others

Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons

Composite
Hadrons
Baryons

Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon

Mesons

Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark

Others

Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules

Hypothetical
Baryons

Hexaquark Heptaquark Skyrmion

Mesons

Glueball Theta meson T meson

Others

Mesonic molecule Pomeron Diquark R-hadron

Quasiparticles

Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion

Lists

Baryons Mesons Particles Quasiparticles Timeline of particle discoveries

Related

History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License