In atomic, molecular, and optical physics, above-threshold ionization (ATI), is a multi-photon effect where an atom is ionized with more than the energetically required number of photons.[1] It was first observed in 1979.[2]


In the case of ATI the photoelectron peaks should appear at

\( {\displaystyle E_{s}=(n+s)\hbar \omega -W,} \)

where the integer n represents the minimal number of photons absorbed, and the integer s represents the number of additional photons absorbed. W is the ionization energy, and \( E_{s} \) is the electron kinetic energy of the peak corresponding to s additional photons being absorbed.[3]


It typically has a strong maximum at the minimal number of photons to ionize the system, with successive peaks (known as ATI peaks) separated by the photon energy and thus corresponding to higher numbers of photons being absorbed.[1][4]

In the non-perturbative regime the bound states are dressed with the electric field, shifting the ionization energy. If the ponderomotive energy of the field is greater than the photon energy \( \omega \), then the first peak disappears.[3]

Features from ultrashort pulses

High intensity ultrashort pulse lasers can create ATI features with 20 or more peaks.[5] The photoelectron spectrum of electron energies is continuous since actual light sources contain a spread of energies.


Parker, Jonathan; Clark, Charles W. (1 February 1996). "Study of a plane-wave final-state theory of above-threshold ionization and harmonic generation". Journal of the Optical Society of America B. 13 (2): 371. Bibcode:1996JOSAB..13..371P. doi:10.1364/JOSAB.13.000371.
Bashkansky, M.; Bucksbaum, P.; Schumacher, D. (13 June 1988). "Asymmetries in Above-Threshold Ionization". Physical Review Letters. 60 (24): 2458–2461. Bibcode:1988PhRvL..60.2458B. doi:10.1103/PhysRevLett.60.2458. PMID 10038359.

Agostini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N. (23 April 1979). "Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms". Physical Review Letters. 42 (17): 1127–1130. Bibcode:1979PhRvL..42.1127A. doi:10.1103/PhysRevLett.42.1127. The original article on the discovery

Gordon W. F. Drake, ed. (2006). Springer handbook of atomic, molecular, and optical physics (Updated and expanded ed.). New York: Springer Science+Business Media. ISBN 0-387-20802-X.
Cormier, E; Lambropoulos, P (14 May 1996). "Optimal gauge and gauge invariance in non-perturbative time-dependent calculation of above-threshold ionization". Journal of Physics B: Atomic, Molecular and Optical Physics. 29 (9): 1667–1680. Bibcode:1996JPhB...29.1667C. doi:10.1088/0953-4075/29/9/013.

Cormier, E; Lambropoulos, P (14 January 1997). "Above-threshold ionization spectrum of hydrogen using B-spline functions". Journal of Physics B: Atomic, Molecular and Optical Physics. 30 (1): 77–91. Bibcode:1997JPhB...30...77C. doi:10.1088/0953-4075/30/1/010.

External links

Above threshold ionization photoelectron spectra



List of laser articles List of laser types List of laser applications Laser acronyms

Laser types: Solid-state
Semiconductor Dye Gas
Chemical Excimer Ion Metal Vapor

Laser physics

Active laser medium Amplified spontaneous emission Continuous wave Doppler cooling Laser ablation Laser cooling Laser linewidth Lasing threshold Magneto-optical trap Optical tweezers Population inversion Resolved sideband cooling Ultrashort pulse

Laser optics

Beam expander Beam homogenizer B Integral Chirped pulse amplification Gain-switching Gaussian beam Injection seeder Laser beam profiler M squared Mode-locking Multiple-prism grating laser oscillator Multiphoton intrapulse interference phase scan Optical amplifier Optical cavity Optical isolator Output coupler Q-switching Regenerative amplification

Laser spectroscopy

Cavity ring-down spectroscopy Confocal laser scanning microscopy Laser-based angle-resolved photoemission spectroscopy Laser diffraction analysis Laser-induced breakdown spectroscopy Laser-induced fluorescence Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy Raman spectroscopy Second-harmonic imaging microscopy Terahertz time-domain spectroscopy Tunable diode laser absorption spectroscopy Two-photon excitation microscopy Ultrafast laser spectroscopy

Laser ionization

Above-threshold ionization Atmospheric-pressure laser ionization Matrix-assisted laser desorption/ionization Resonance-enhanced multiphoton ionization Soft laser desorption Surface-assisted laser desorption/ionization Surface-enhanced laser desorption/ionization

Laser fabrication

Laser beam welding Laser bonding Laser converting Laser cutting Laser cutting bridge Laser drilling Laser engraving Laser-hybrid welding Laser peening Multiphoton lithography Pulsed laser deposition Selective laser melting Selective laser sintering

Laser medicine

Computed tomography laser mammography Laser capture microdissection Laser hair removal Laser lithotripsy Laser coagulation Laser surgery Laser thermal keratoplasty LASIK Low-level laser therapy Optical coherence tomography Photorefractive keratectomy Photorejuvenation

Laser fusion

Argus laser Cyclops laser GEKKO XII HiPER ISKRA lasers Janus laser Laboratory for Laser Energetics Laser integration line Laser Mégajoule Long path laser LULI2000 Mercury laser National Ignition Facility Nike laser Nova (laser) Novette laser Shiva laser Trident laser Vulcan laser

Civil applications

3D laser scanner CD DVD Blu-ray Laser lighting display Laser pointer Laser printer Laser tag

Military applications

Advanced Tactical Laser Boeing Laser Avenger Dazzler (weapon) Electrolaser Laser designator Laser guidance Laser-guided bomb Laser guns Laser rangefinder Laser warning receiver Laser weapon LLM01 Multiple Integrated Laser Engagement System Tactical High Energy Laser Tactical light ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)

List of laser articles

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License