ART

Beam expanders are optical devices that take a collimated beam of light and expand its size (or, used in reverse, reduce its size).

In laser physics they are used either as intracavity or extracavity elements. They can be telescopic in nature or prismatic. Generally prismatic beam expanders use several prisms and are known as multiple-prism beam expanders.

Telescopic beam expanders include refracting and reflective telescopes.[1] A refracting telescope commonly used is the Galilean telescope which can function as a simple beam expander for collimated light. The main advantage of the Galilean design is that it never focuses a collimated beam to a point, so effects associated with high power density such as dielectric breakdown are more avoidable than with focusing designs such as the Keplerian telescope. When used as intracavity beam expanders, in laser resonators, these telescopes provide two-dimensional beam expansion in the 20–50 range.[1]

In tunable laser resonators intracavity beam expansion usually illuminates the whole width of a diffraction grating.[2] Thus beam expansion reduces the beam divergence and enables the emission of very narrow linewidths[3] which is a desired feature for many analytical applications including laser spectroscopy.[4][5]

Multiple-prism beam expanders
Long-pulse tunable laser oscillator utilizing a multiple-prism beam expander[6]

Multiple-prism beam expanders usually deploy two to five prisms to yield large one-dimensional beam expansion factors. Designs applicable to tunable lasers with beam expansion factors of up to 200 have been disclosed in the literature.[3] Initially multiple-prism grating configurations were introduced in narrow-linewidth liquid dye lasers[1][7] but eventually were also adopted in gas, solid-state, and diode laser designs.[3] The generalized mathematical description of multiple-prism beam expanders, introduced by Duarte,[8] is known as the multiple-prism dispersion theory.[1][3]

Duarte's multiple-prism grating laser oscillator

Multiple-prism beam expanders and arrays can also be described using ray transfer matrices.[9] The multiple-prism dispersion theory is also available in 4 X 4 matrix form.[3][10] These matrix equations are applicable either to prism pulse compressors or multiple-prism beam expanders.[3]

Extra-cavity beam shaping

Extra cavity hybrid beam transformers: using a telescopic beam expander, followed by a convex lens, followed by a multiple-prism beam expander, a laser beam (with a circular cross section) can be transformed into an extremely elongated beam, in the plane of propagation, while extremely thin in the orthogonal plane.[3][11] The resulting plane illumination, with a near one-dimensional (or line) cross section, eliminates the need of point-by-point scanning and has become important for applications such as N-slit interferometry, microdensitometry, and microscopy. This type of illumination can also be known in the literature as light sheet illumination or selective plane illumination.
See also

Laser communication in space
Microdensitometer
Multiple-prism dispersion theory
Multiple-prism grating laser oscillators
N-Slit interferometer
Ray transfer matrix analysis

References

Duarte, F. J. (1990). "Narrow-linewidth pulsed dye Laser oscillators". In Duarte, F. J.; Hillman, L. W. (eds.). Dye Laser Principles. Academic Press. ISBN 978-0-12-222700-4.
Hänsch, T. W. (1972). "Repetitively pulsed tunable dye laser for high resolution spectroscopy". Applied Optics. 11 (4): 895–898. Bibcode:1972ApOpt..11..895H. doi:10.1364/AO.11.000895. PMID 20119064.
Duarte, F. J. (2015). Tunable Laser Optics (2nd ed.). CRC Press. ISBN 978-1-4822-4529-5.
Demtröder, W. (2007). Laserspektroscopie: Grundlagen und Techniken (in German) (5th ed.). Springer. ISBN 978-3-540-33792-8.
Demtröder, W. (2008). Laser Spectroscopy Volume 1: Basic Principles (4th ed.). Springer. ISBN 978-3-540-73415-4.
F. J. Duarte, T. S. Taylor, A. Costela, I. Garcia-Moreno, and R. Sastre, Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator,Appl. Opt. 37, 3987–3989 (1998).
Duarte, F. J.; Piper, J. (1980). "A double-prism beam expander for pulsed dye lasers". Optics Communications. 35: 100–104. Bibcode:1980OptCo..35..100D. doi:10.1016/0030-4018(80)90368-5.
Duarte, F. J.; Piper, J. (1982). "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers". Optics Communications. 43 (5): 303–307. Bibcode:1982OptCo..43..303D. doi:10.1016/0030-4018(82)90216-4.
Duarte, F. J. (1989). "Ray transfer matrix analysis of multiple-prism dye laser oscillators". Optics and Quantum Electronics. 21: 47–54. doi:10.1007/BF02199466.
Duarte, F. J. (1992). "Multiple-prism dispersion and 4×4 ray transfer matrices". Optics and Quantum Electronics. 24: 49–53. doi:10.1007/BF01234278.

Duarte, F. J. (1991). "Chapter 2". High Power Dye Lasers. Springer-Verlag. ISBN 978-0-387-54066-5.

vte

Lasers

List of laser articles List of laser types List of laser applications Laser acronyms

Laser types: Solid-state
Semiconductor Dye Gas
Chemical Excimer Ion Metal Vapor

Laser physics

Active laser medium Amplified spontaneous emission Continuous wave Doppler cooling Laser ablation Laser cooling Laser linewidth Lasing threshold Magneto-optical trap Optical tweezers Population inversion Resolved sideband cooling Ultrashort pulse

Laser optics

Beam expander Beam homogenizer B Integral Chirped pulse amplification Gain-switching Gaussian beam Injection seeder Laser beam profiler M squared Mode-locking Multiple-prism grating laser oscillator Multiphoton intrapulse interference phase scan Optical amplifier Optical cavity Optical isolator Output coupler Q-switching Regenerative amplification

Laser spectroscopy

Cavity ring-down spectroscopy Confocal laser scanning microscopy Laser-based angle-resolved photoemission spectroscopy Laser diffraction analysis Laser-induced breakdown spectroscopy Laser-induced fluorescence Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy Raman spectroscopy Second-harmonic imaging microscopy Terahertz time-domain spectroscopy Tunable diode laser absorption spectroscopy Two-photon excitation microscopy Ultrafast laser spectroscopy

Laser ionization

Above-threshold ionization Atmospheric-pressure laser ionization Matrix-assisted laser desorption/ionization Resonance-enhanced multiphoton ionization Soft laser desorption Surface-assisted laser desorption/ionization Surface-enhanced laser desorption/ionization

Laser fabrication

Laser beam welding Laser bonding Laser converting Laser cutting Laser cutting bridge Laser drilling Laser engraving Laser-hybrid welding Laser peening Multiphoton lithography Pulsed laser deposition Selective laser melting Selective laser sintering

Laser medicine

Computed tomography laser mammography Laser capture microdissection Laser hair removal Laser lithotripsy Laser coagulation Laser surgery Laser thermal keratoplasty LASIK Low-level laser therapy Optical coherence tomography Photorefractive keratectomy Photorejuvenation

Laser fusion

Argus laser Cyclops laser GEKKO XII HiPER ISKRA lasers Janus laser Laboratory for Laser Energetics Laser integration line Laser Mégajoule Long path laser LULI2000 Mercury laser National Ignition Facility Nike laser Nova (laser) Novette laser Shiva laser Trident laser Vulcan laser

Civil applications

3D laser scanner CD DVD Blu-ray Laser lighting display Laser pointer Laser printer Laser tag

Military applications

Advanced Tactical Laser Boeing Laser Avenger Dazzler (weapon) Electrolaser Laser designator Laser guidance Laser-guided bomb Laser guns Laser rangefinder Laser warning receiver Laser weapon LLM01 Multiple Integrated Laser Engagement System Tactical High Energy Laser Tactical light ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License