A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks.


Some massive stars collapse to form neutron stars at the end of their life cycle, as has been both observed and explained theoretically. Under the extreme temperatures and pressures inside neutron stars, the neutrons are normally kept apart by a degeneracy pressure, stabilizing the star and hindering further gravitational collapse. However, it is hypothesized that under even more extreme temperature and pressure, the degeneracy pressure of the neutrons is overcome, and the neutrons are forced to merge and dissolve into their constituent quarks, creating an ultra-dense phase of quark matter based on densely packed quarks. In this state, a new equilibrium is supposed to emerge, as a new degeneracy pressure between the quarks, as well as repulsive electromagnetic forces, will occur and hinder gravitational collapse.

If these ideas are correct, quark stars might occur, and be observable, somewhere in the universe. Theoretically, such a scenario is seen as scientifically plausible, but it has been impossible to prove both observationally and experimentally, because the very extreme conditions needed for stabilizing quark matter cannot be created in any laboratory nor observed directly in nature. The stability of quark matter, and hence the existence of quark stars, is for these reasons among the unsolved problems in physics.

If quark stars can form, then the most likely place to find quark star matter would be inside neutron stars that exceed the internal pressure needed for quark degeneracy – the point at which neutrons break down into a form of dense quark matter. They could also form if a massive star collapses at the end of its life, provided that it is possible for a star to be large enough to collapse beyond a neutron star but not large enough to form a black hole.

If they exist, quark stars would resemble and be easily mistaken for neutron stars: they would form in the death of a massive star in a Type II supernova, be extremely dense and small, and possess a very high gravitational field. They would also lack some features of neutron stars, unless they also contained a shell of neutron matter, because free quarks are not expected to have properties matching degenerate neutron matter. For example, they might be radio-silent, or not have typical sizes, electromagnetic fields, or surface temperatures, compared to neutron stars.

The analysis about quark stars was first proposed in 1965 by Soviet physicists D. D. Ivanenko and D. F. Kurdgelaidze.[1][2] Their existence has not been confirmed.

The equation of state of quark matter is uncertain, as is the transition point between neutron-degenerate matter and quark matter. Theoretical uncertainties have precluded making predictions from first principles. Experimentally, the behaviour of quark matter is being actively studied with particle colliders, but this can only produce very hot (above 1012 K) quark–gluon plasma blobs the size of atomic nuclei, which decay immediately after formation. The conditions inside compact stars with extremely high densities and temperatures well below 1012 K cannot be recreated artificially, as there are no known methods to produce, store or study "cold" quark matter directly as it would be found inside quark stars. The theory predicts quark matter to possess some peculiar characteristics under these conditions.

It is theorized that when the neutron-degenerate matter, which makes up neutron stars, is put under sufficient pressure from the star's own gravity or the initial supernova creating it, the individual neutrons break down into their constituent quarks (up quarks and down quarks), forming what is known as quark matter. This conversion might be confined to the neutron star's center or it might transform the entire star, depending on the physical circumstances. Such a star is known as a quark star.[3][4]
Stability and strange quark matter

Ordinary quark matter consisting of up and down quarks (also referred to as u and d quarks) has a very high Fermi energy compared to ordinary atomic matter and is stable only under extreme temperatures and/or pressures. This suggests that the only stable quark stars will be neutron stars with a quark matter core, while quark stars consisting entirely of ordinary quark matter will be highly unstable and dissolve spontaneously.[5][6]

It has been shown that the high Fermi energy making ordinary quark matter unstable at low temperatures and pressures can be lowered substantially by the transformation of a sufficient number of up and down quarks into strange quarks, as strange quarks are, relatively speaking, a very heavy type of quark particle.[5] This kind of quark matter is known specifically as strange quark matter and it is speculated and subject to current scientific investigation whether it might in fact be stable under the conditions of interstellar space (i.e. near zero external pressure and temperature). If this is the case (known as the Bodmer–Witten assumption), quark stars made entirely of quark matter would be stable if they quickly transform into strange quark matter.[7]
Strange stars
Main article: Strange star

Quark stars made of strange quark matter are known as strange stars, and they form a subgroup under the quark star category.[7]

Theoretical investigations have revealed that quark stars might not only be produced from neutron stars and powerful supernovas, they could also be created in the early cosmic phase separations following the Big Bang.[5] If these primordial quark stars transform into strange quark matter before the external temperature and pressure conditions of the early Universe makes them unstable, they might turn out stable, if the Bodmer–Witten assumption holds true. Such primordial strange stars could survive to this day.[5]

Quark stars have some special characteristics that separate them from ordinary neutron stars.

Under the physical conditions found inside neutron stars, with extremely high densities but temperatures well below 1012 K, quark matter is predicted to exhibit some peculiar characteristics. It is expected to behave as a Fermi liquid and enter a so-called color-flavor-locked (CFL) phase of color superconductivity, where "color" refers to the six "charges" exhibited in the strong interaction, instead of the positive and the negative charges in electromagnetism. At slightly lower densities, corresponding to higher layers closer to the surface of the compact star, the quark matter will behave as a non-CFL quark liquid, a phase that is even more mysterious than CFL and might include color conductivity and/or several additional yet undiscovered phases. None of these extreme conditions can currently be recreated in laboratories so nothing can be inferred about these phases from direct experiments.[8]

If the conversion of neutron-degenerate matter to (strange) quark matter is total, a quark star can to some extent be imagined as a single gigantic hadron. But this "hadron" will be bound by gravity, rather than by the strong force that binds ordinary hadrons.
Observed overdense neutron stars

At least under the assumptions mentioned above, the probability of a given neutron star being a quark star is low, so in the Milky Way there would only be a small population of quark stars. If it is correct, however, that overdense neutron stars can turn into quark stars, that makes the possible number of quark stars higher than was originally thought, as observers would be looking for the wrong type of star.

Observations released by the Chandra X-ray Observatory on April 10, 2002 detected two possible quark stars, designated RX J1856.5-3754 and 3C58, which had previously been thought to be neutron stars. Based on the known laws of physics, the former appeared much smaller and the latter much colder than it should be, suggesting that they are composed of material denser than neutron-degenerate matter. However, these observations are met with skepticism by researchers who say the results were not conclusive;[9] and since the late 2000s, the possibility that RX J1856 is a quark star has been excluded.

Another star, XTE J1739-285,[10] has been observed by a team led by Philip Kaaret of the University of Iowa and reported as a possible quark star candidate.

In 2006, You-Ling Yue et al., from Peking University, suggested that PSR B0943+10 may in fact be a low-mass quark star.[11]

It was reported in 2008 that observations of supernovae SN 2006gy, SN 2005gj and SN 2005ap also suggest the existence of quark stars.[12] It has been suggested that the collapsed core of supernova SN 1987A may be a quark star.[13][14]

In 2015, Zi-Gao Dai et al. from Nanjing University suggested that Supernova ASASSN-15lh is a newborn strange quark star.[15]
Other theorized quark formations

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Quark star" – news · newspapers · books · scholar · JSTOR (December 2015) (Learn how and when to remove this template message)

Apart from ordinary quark matter and strange quark matter, other types of quark-gluon plasma might theoretically occur or be formed inside neutron stars and quark stars. This includes the following, some of which has been observed and studied in laboratories:

Robert L. Jaffe 1977, suggested a four-quark state with strangeness (qsqs).
Robert L. Jaffe 1977 suggested the H dibaryon, a six-quark state with equal numbers of up-, down-, and strange quarks (represented as uuddss or udsuds).
Bound multi-quark systems with heavy quarks (QQqq).
In 1987, a pentaquark state was first proposed with a charm anti-quark (qqqsc).
Pentaquark state with an antistrange quark and four light quarks consisting of up- and down-quarks only (qqqqs).
Light pentaquarks are grouped within an antidecuplet, the lightest candidate, Θ+, which can also be described by the diquark model of Robert L. Jaffe and Wilczek (QCD).
Θ++ and antiparticle Θ−−.
Doubly strange pentaquark (ssddu), member of the light pentaquark antidecuplet.
Charmed pentaquark Θc(3100) (uuddc) state was detected by the H1 collaboration.[16]
Tetraquark particles might form inside neutron stars and under other extreme conditions. In 2008, 2013 and 2014 the tetraquark particle of Z(4430), was discovered and investigated in laboratories on Earth.[17]

See also

iconStar portal

Planck star
Quantum chromodynamics
Neutron stars – neutron matter – neutron-degenerate matter – neutron
Tolman–Oppenheimer–Volkoff limit on the mass of a neutron star.

Compact star
Exotic star
Neutron star
White dwarf
Stellar black hole

Degenerate matter
QCD matter
Quark–gluon plasma
Quark matter
Preon matter


Ivanenko, Dmitri D.; Kurdgelaidze, D. F. (1965). "Hypothesis concerning quark stars". Astrophysics. 1 (4): 251–252. Bibcode:1965Ap......1..251I. doi:10.1007/BF01042830. S2CID 119657479.
Ivanenko, Dmitri D.; Kurdgelaidze, D. F. (1969). "Remarks on quark stars". Lettere al Nuovo Cimento. 2: 13–16. Bibcode:1969NCimL...2...13I. doi:10.1007/BF02753988. S2CID 120712416.
Shapiro, Stuart L.; Teukolsky, Saul A. (2008). Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. Wiley. ISBN 978-0471873167.
Blaschke, David; Sedrakian, Armen; Glendenning, Norman K., eds. (2001). Physics of neutron star interiors. Lecture Notes in Physics. 578. Springer-Verlag. doi:10.1007/3-540-44578-1. ISBN 978-3-540-42340-9.
Witten, Edward (1984). "Cosmic separation of phases". Physical Review D. 30 (2): 272–285. Bibcode:1984PhRvD..30..272W. doi:10.1103/PhysRevD.30.272.
Farhi, Edward; Jaffe, Robert L. (1984). "Strange matter". Physical Review D. 30 (11): 2379. Bibcode:1984PhRvD..30.2379F. doi:10.1103/PhysRevD.30.2379.
Weber, Fridolin; Kettner, Christiane; Weigel, Manfred K.; Glendenning, Norman K. "Strange-matter Stars". in Kumar, Shiva; Madsen, Jes; Panagiotou, Apostolos D.; Vassiliadis, G. (eds.). International Symposium on Strangeness and Quark Matter, Kolymbari, Greece, 1-5 Sep 1994. Singapore: World Scientific. pp. 308–317.
Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schäfer, Thomas (2008). "Color superconductivity in dense quark matter". Reviews of Modern Physics. 80 (4): 1455–1515. arXiv:0709.4635. Bibcode:2008RvMP...80.1455A. doi:10.1103/RevModPhys.80.1455. S2CID 14117263.
Trümper, Joachim E.; Burwitz, Vadim; Haberl, Frank W.; Zavlin, Vyatcheslav E. (June 2004). "The puzzles of RX J1856.5-3754: neutron star or quark star?". Nuclear Physics B: Proceedings Supplements. 132: 560–565.arXiv:astro-ph/0312600. Bibcode:2004NuPhS.132..560T. CiteSeerX doi:10.1016/j.nuclphysbps.2004.04.094. S2CID 425112.
Shiga, David; "Fastest spinning star may have exotic heart", New Scientist, 2007 February 20
Yue, You-Ling; Cui, Xiao-Hong; Xu, Ren-Xin (2006). "Is PSR B0943+10 a low-mass quark star?". Astrophysical Journal. 649 (2): L95–L98. arXiv:astro-ph/0603468. Bibcode:2006ApJ...649L..95Y. doi:10.1086/508421. S2CID 18183996.
Chadha, Kulvinder Singh; "Second Supernovae Point to Quark Stars", Astronomy Now Online, 2008 June 04
Chan; Cheng; Harko; Lau; Lin; Suen; Tian (2009). "Could the compact remnant of SN 1987A be a quark star?". Astrophysical Journal. 695 (1): 732–746. arXiv:0902.0653. Bibcode:2009ApJ...695..732C. doi:10.1088/0004-637X/695/1/732. S2CID 14402008.
Parsons, Paul; "Quark star may hold secret to early universe", New Scientist, 2009 February 18
Dai, Zi-Gao; Wang, Shan-Qin; Wang, J. S.; Wang, Ling-Jun; Yu, Yun-Wei (2015-08-31). "The Most Luminous Supernova ASASSN-15lh: Signature of a Newborn Rapidly-Rotating Strange Quark Star". The Astrophysical Journal. 817 (2): 132. arXiv:1508.07745. Bibcode:2016ApJ...817..132D. doi:10.3847/0004-637X/817/2/132. S2CID 54823427.
H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Asmone, A.; Babaev, A.; et al. (2004). "Evidence for a narrow anti-charmed baryon state of mass". Physics Letters B. 588 (1–2): 17–28. arXiv:hep-ex/0403017. Bibcode:2004PhLB..588...17A. doi:10.1016/j.physletb.2004.03.012.

Koberlein, Brian (10 April 2014). "How CERN's discovery of exotic particles may affect astrophysics". Universe Today. Retrieved 14 April 2014./

Sources and further reading

Blaschke, David; Sedrakian, David, eds. (2003). Superdense QCD Matter and Compact Stars. NATO Science Series II: Mathematics, Physics and Chemistry. 197. Springer. doi:10.1007/1-4020-3430-X. ISBN 978-1-4020-3428-2.
Blaschke, David; Sedrakian, Armen; Glendenning, Norman K., eds. (2001). Physics of neutron star interiors. Lecture Notes in Physics. 578. Springer-Verlag. doi:10.1007/3-540-44578-1. ISBN 978-3-540-42340-9.
Plessas, Willibald; Mathelitsch, Leopold, eds. (2002). Lectures on quark matter. Lecture Notes in Physics. 583. Springer. doi:10.1007/3-540-45792-5. ISBN 978-3-540-43234-0.

External links

Jaffe, Robert L. (1977). "Perhaps a Stable Dihyperon" (PDF). Physical Review Letters. 38 (5): 195–198. Bibcode:1977PhRvL..38..195J. doi:10.1103/PhysRevLett.38.195. OSTI 1446298.
Neutron Star/Quark Star Interior (image to print)
Whitfield,John; "Quark star glimmers", Nature, 2002 April 11
"Debate sparked on quark stars", CERN Courier 42, #5, June 2002, page 13
Beck, Paul; "Wish Upon a Quark Star", Popular Science, June 2002
Drake; Marshall; Dreizler; Freeman; Fruscione; Juda; Kashyap; Nicastro; et al. (2002). "Is RX J185635-375 a Quark Star?". Astrophysical Journal. 572 (2): 996–1001.arXiv:astro-ph/0204159. Bibcode:2002ApJ...572..996D. doi:10.1086/340368. S2CID 18481546.
Krivoruchenko, M. I.; "Strange, quark, and metastable neutron stars", JETP Letters, vol. 46, no. 1, 10 July 1987, pages 3-6 (page 6: Perhaps a 1,700-year-old quark star in SNR MSH 15-52)
Rothstein, Dave; "Curious About Astronomy: What process would bring about a quark star?", question #445, January 2003
Nemiroff, Robert; Bonnell, Jerry; "RX J185635-375: Candidate Quark Star", Astronomy Picture of the Day, NASA Goddard Space Flight Center, 2002 April 14
Anderson, Mark K.: Quarks or Quirky Neutron Stars?, Wired News, 2002 April 19
Boyce, Kevin; Still, Martin; "What is the news about a possible Strange Quark Star?", Ask an Astrophysicist, NASA Goddard Space Flight Center, 2002 April 12
Marquit, Miranda; "Seeing 'Strange' Stars",, 2006 February 8
"Quark Stars Could Produce Biggest Bang",, 2006 June 7
Niebergal, Brian: "Meissner Effect in Strange Quark Stars", Computational Astro-Physics Calgary Alberta, University of Calgary
Sagert, Irina; Wietoska, Mirjam; Schaffner-Bielich, Jurgen (2006). "Strange Exotic States and Compact Stars". Journal of Physics G. 32 (12): S241–S249.arXiv:astro-ph/0608317. Bibcode:2006JPhG...32S.241S. CiteSeerX doi:10.1088/0954-3899/32/12/S30. S2CID 15151001.
Bryner, Jeanna; "Quark Stars Involved in New Theory of Brightest Supernovae",, 2008 June 3 (The first-ever evidence of a neutron star collapsing into a quark star is announced)
Cramer, John G.: "Quark Stars, Alternate View Column AV-114", Analog Science Fiction & Fact Magazine, November 2002


Neutron star

Radio-quiet Pulsar

Single pulsars

Soft gamma repeater Anomalous X-ray Rotating radio transient

Binary pulsars

Binary X-ray pulsar
X-ray binary X-ray burster List Millisecond Be/X-ray Spin-up


Fast radio burst Bondi accretion Chandrasekhar limit Gamma-ray burst Glitch Neutronium Neutron-star oscillation Optical Pulsar kick Quasi-periodic oscillation Relativistic Rp-process Starquake Timing noise Tolman–Oppenheimer–Volkoff limit Urca process


Gamma-ray burst progenitors Asteroseismology Compact star
Quark star Exotic star Supernova
Supernova remnant Related links Hypernova Kilonova Neutron star merger Quark-nova White dwarf
Related links Stellar black hole
Related links Radio star Pulsar planet Pulsar wind nebula Thorne–Żytkow object


LGM-1 Centaurus X-3 Timeline of white dwarfs, neutron stars, and supernovae


Rossi X-ray Timing Explorer Fermi Gamma-ray Space Telescope Compton Gamma Ray Observatory Chandra X-ray Observatory


X-ray pulsar-based navigation Tempo software program Astropulse The Magnificent Seven



Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track


Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova

Spectral classification

Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]


White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary


Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar

Stellar nucleosynthesis

Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova


Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism


Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram

Star systems

Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system


Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard


Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy

Related articles

Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License