The Chandrasekhar limit (/tʃʌndrəˈseɪkər/) is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about 1.4 M☉ (2.765×1030 kg).[1][2][3]

White dwarfs resist gravitational collapse primarily through electron degeneracy pressure (compare main sequence stars, which resist collapse through thermal pressure). The Chandrasekhar limit is the mass above which electron degeneracy pressure in the star's core is insufficient to balance the star's own gravitational self-attraction. Consequently, a white dwarf with a mass greater than the limit is subject to further gravitational collapse, evolving into a different type of stellar remnant, such as a neutron star or black hole. Those with masses up to the limit remain stable as white dwarfs.[4]

The limit was named after Subrahmanyan Chandrasekhar. Chandrasekhar improved upon the accuracy of the calculation in 1930 by calculating the limit for a polytrope model of a star in hydrostatic equilibrium, and comparing his limit to the earlier limit found by E. C. Stoner for a uniform density star. Importantly, the existence of a limit, based on the conceptual breakthrough of combining relativity with Fermi degeneracy, was indeed first established in separate papers published by Wilhelm Anderson and E. C. Stoner in 1929. The limit was initially ignored by the community of scientists because such a limit would logically require the existence of black holes, which were considered a scientific impossibility at the time. The fact that the roles of Stoner and Anderson are often overlooked in the astronomy community has been noted.[5][6]

Radius–mass relations for a model white dwarf. The green curve uses the general pressure law for an ideal Fermi gas, while the blue curve is for a non-relativistic ideal Fermi gas. The black line marks the ultrarelativistic limit.

Electron degeneracy pressure is a quantum-mechanical effect arising from the Pauli exclusion principle. Since electrons are fermions, no two electrons can be in the same state, so not all electrons can be in the minimum-energy level. Rather, electrons must occupy a band of energy levels. Compression of the electron gas increases the number of electrons in a given volume and raises the maximum energy level in the occupied band. Therefore, the energy of the electrons increases on compression, so pressure must be exerted on the electron gas to compress it, producing electron degeneracy pressure. With sufficient compression, electrons are forced into nuclei in the process of electron capture, relieving the pressure.

In the nonrelativistic case, electron degeneracy pressure gives rise to an equation of state of the form P = K1ρ5/3, where P is the pressure, ρ is the mass density, and K1 is a constant. Solving the hydrostatic equation leads to a model white dwarf that is a polytrope of index 3/2 – and therefore has radius inversely proportional to the cube root of its mass, and volume inversely proportional to its mass.[7]

As the mass of a model white dwarf increases, the typical energies to which degeneracy pressure forces the electrons are no longer negligible relative to their rest masses. The velocities of the electrons approach the speed of light, and special relativity must be taken into account. In the strongly relativistic limit, the equation of state takes the form P = K2ρ4/3. This yields a polytrope of index 3, which has a total mass, Mlimit say, depending only on K2.[8]

For a fully relativistic treatment, the equation of state used interpolates between the equations P = K1ρ5/3 for small ρ and P = K2ρ4/3 for large ρ. When this is done, the model radius still decreases with mass, but becomes zero at Mlimit. This is the Chandrasekhar limit.[9] The curves of radius against mass for the non-relativistic and relativistic models are shown in the graph. They are colored blue and green, respectively. μe has been set equal to 2. Radius is measured in standard solar radii[10] or kilometers, and mass in standard solar masses.

Calculated values for the limit vary depending on the nuclear composition of the mass.[11] Chandrasekhar[12], eq. (36),[9], eq. (58),[13], eq. (43) gives the following expression, based on the equation of state for an ideal Fermi gas:

\( {\displaystyle M_{\rm {limit}}={\frac {\omega _{3}^{0}{\sqrt {3\pi }}}{2}}\left({\frac {\hbar c}{G}}\right)^{\frac {3}{2}}{\frac {1}{(\mu _{\text{e}}m_{\text{H}})^{2}}}} \)


ħ is the reduced Planck constant
c is the speed of light
G is the gravitational constant
μe is the average molecular weight per electron, which depends upon the chemical composition of the star.
mH is the mass of the hydrogen atom.
3 ≈ 2.018236 is a constant connected with the solution to the Lane–Emden equation.

As √ħc/G is the Planck mass, the limit is of the order of

\( {\displaystyle {\frac {M_{\text{Pl}}^{3}}{m_{\text{H}}^{2}}}} \)

The limiting mass can be obtained formally from the Chandrasekhar's white dwarf equation by taking the limit of large central density.

A more accurate value of the limit than that given by this simple model requires adjusting for various factors, including electrostatic interactions between the electrons and nuclei and effects caused by nonzero temperature.[11] Lieb and Yau[14] have given a rigorous derivation of the limit from a relativistic many-particle Schrödinger equation.

In 1926, the British physicist Ralph H. Fowler observed that the relationship between the density, energy, and temperature of white dwarfs could be explained by viewing them as a gas of nonrelativistic, non-interacting electrons and nuclei that obey Fermi–Dirac statistics.[15] This Fermi gas model was then used by the British physicist Edmund Clifton Stoner in 1929 to calculate the relationship among the mass, radius, and density of white dwarfs, assuming they were homogeneous spheres.[16] Wilhelm Anderson applied a relativistic correction to this model, giving rise to a maximum possible mass of approximately 1.37×1030 kg.[17] In 1930, Stoner derived the internal energy–density equation of state for a Fermi gas, and was then able to treat the mass–radius relationship in a fully relativistic manner, giving a limiting mass of approximately 2.19×1030 kg (for μe = 2.5).[18] Stoner went on to derive the pressure–density equation of state, which he published in 1932.[19] These equations of state were also previously published by the Soviet physicist Yakov Frenkel in 1928, together with some other remarks on the physics of degenerate matter.[20] Frenkel's work, however, was ignored by the astronomical and astrophysical community.[21]

A series of papers published between 1931 and 1935 had its beginning on a trip from India to England in 1930, where the Indian physicist Subrahmanyan Chandrasekhar worked on the calculation of the statistics of a degenerate Fermi gas.[22] In these papers, Chandrasekhar solved the hydrostatic equation together with the nonrelativistic Fermi gas equation of state,[7] and also treated the case of a relativistic Fermi gas, giving rise to the value of the limit shown above.[8][9][12][23] Chandrasekhar reviews this work in his Nobel Prize lecture.[13] This value was also computed in 1932 by the Soviet physicist Lev Davidovich Landau,[24] who, however, did not apply it to white dwarfs and concluded that quantum laws might be invalid for stars heavier than 1.5 solar mass.

Chandrasekhar's work on the limit aroused controversy, owing to the opposition of the British astrophysicist Arthur Eddington. Eddington was aware that the existence of black holes was theoretically possible, and also realized that the existence of the limit made their formation possible. However, he was unwilling to accept that this could happen. After a talk by Chandrasekhar on the limit in 1935, he replied:

The star has to go on radiating and radiating and contracting and contracting until, I suppose, it gets down to a few km radius, when gravity becomes strong enough to hold in the radiation, and the star can at last find peace. ... I think there should be a law of Nature to prevent a star from behaving in this absurd way![25]

Eddington's proposed solution to the perceived problem was to modify relativistic mechanics so as to make the law P = K1ρ5/3 universally applicable, even for large ρ.[26] Although Niels Bohr, Fowler, Wolfgang Pauli, and other physicists agreed with Chandrasekhar's analysis, at the time, owing to Eddington's status, they were unwilling to publicly support Chandrasekhar.[27], pp. 110–111 Through the rest of his life, Eddington held to his position in his writings,[28][29][30][31][32] including his work on his fundamental theory.[33] The drama associated with this disagreement is one of the main themes of Empire of the Stars, Arthur I. Miller's biography of Chandrasekhar.[27] In Miller's view:

Chandra's discovery might well have transformed and accelerated developments in both physics and astrophysics in the 1930s. Instead, Eddington's heavy-handed intervention lent weighty support to the conservative community astrophysicists, who steadfastly refused even to consider the idea that stars might collapse to nothing. As a result, Chandra's work was almost forgotten.[27]:150


The core of a star is kept from collapsing by the heat generated by the fusion of nuclei of lighter elements into heavier ones. At various stages of stellar evolution, the nuclei required for this process are exhausted, and the core collapses, causing it to become denser and hotter. A critical situation arises when iron accumulates in the core, since iron nuclei are incapable of generating further energy through fusion. If the core becomes sufficiently dense, electron degeneracy pressure will play a significant part in stabilizing it against gravitational collapse.[34]

If a main-sequence star is not too massive (less than approximately 8 solar masses), it eventually sheds enough mass to form a white dwarf having mass below the Chandrasekhar limit, which consists of the former core of the star. For more-massive stars, electron degeneracy pressure does not keep the iron core from collapsing to very great density, leading to formation of a neutron star, black hole, or, speculatively, a quark star. (For very massive, low-metallicity stars, it is also possible that instabilities destroy the star completely.)[35][36][37][38] During the collapse, neutrons are formed by the capture of electrons by protons in the process of electron capture, leading to the emission of neutrinos.[34], pp. 1046–1047. The decrease in gravitational potential energy of the collapsing core releases a large amount of energy on the order of 1046 joules (100 foes). Most of this energy is carried away by the emitted neutrinos[39] and the kinetic energy of the expanding shell of gas; only about 1% is emitted as optical light.[40] This process is believed responsible for supernovae of types Ib, Ic, and II.[34]

Type Ia supernovae derive their energy from runaway fusion of the nuclei in the interior of a white dwarf. This fate may befall carbon–oxygen white dwarfs that accrete matter from a companion giant star, leading to a steadily increasing mass. As the white dwarf's mass approaches the Chandrasekhar limit, its central density increases, and, as a result of compressional heating, its temperature also increases. This eventually ignites nuclear fusion reactions, leading to an immediate carbon detonation, which disrupts the star and causes the supernova.[41], §5.1.2

A strong indication of the reliability of Chandrasekhar's formula is that the absolute magnitudes of supernovae of Type Ia are all approximately the same; at maximum luminosity, MV is approximately −19.3, with a standard deviation of no more than 0.3.[41], (1) A 1-sigma interval therefore represents a factor of less than 2 in luminosity. This seems to indicate that all type Ia supernovae convert approximately the same amount of mass to energy.
Super-Chandrasekhar mass supernovas
Main article: Champagne Supernova

In April 2003, the Supernova Legacy Survey observed a type Ia supernova, designated SNLS-03D3bb, in a galaxy approximately 4 billion light years away. According to a group of astronomers at the University of Toronto and elsewhere, the observations of this supernova are best explained by assuming that it arose from a white dwarf that had grown to twice the mass of the Sun before exploding. They believe that the star, dubbed the "Champagne Supernova"[42] may have been spinning so fast that a centrifugal tendency allowed it to exceed the limit. Alternatively, the supernova may have resulted from the merger of two white dwarfs, so that the limit was only violated momentarily. Nevertheless, they point out that this observation poses a challenge to the use of type Ia supernovae as standard candles.[43][44][45]

Since the observation of the Champagne Supernova in 2003, several more type Ia supernovae have been observed that are very bright, and thought to have originated from white dwarfs whose masses exceeded the Chandrasekhar limit. These include SN 2006gz, SN 2007if, and SN 2009dc.[46] The super-Chandrasekhar mass white dwarfs that gave rise to these supernovae are believed to have had masses up to 2.4–2.8 solar masses.[46] One way to potentially explain the problem of the Champagne Supernova was considering it the result of an aspherical explosion of a white dwarf. However, spectropolarimetric observations of SN 2009dc showed it had a polarization smaller than 0.3, making the large asphericity theory unlikely.[46]
Tolman–Oppenheimer–Volkoff limit

After a supernova explosion, a neutron star may be left behind (except Ia type supernova explosion, which never leaves any remnants behind). These objects are even more compact than white dwarfs and are also supported, in part, by degeneracy pressure. A neutron star, however, is so massive and compressed that electrons and protons have combined to form neutrons, and the star is thus supported by neutron degeneracy pressure (as well as short-range repulsive neutron-neutron interactions mediated by the strong force) instead of electron degeneracy pressure. The limiting value for neutron star mass, analogous to the Chandrasekhar limit, is known as the Tolman–Oppenheimer–Volkoff limit.
See also

Bekenstein bound
Chandrasekhar's white dwarf equation
Schönberg–Chandrasekhar limit


Hawking, S. W.; Israel, W., eds. (1989). Three Hundred Years of Gravitation (1st pbk. corrected ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-37976-2.
Bethe, Hans A.; Brown, Gerald (2003). "How A Supernova Explodes". In Bethe, Hans A.; Brown, Gerald; Lee, Chang-Hwan (eds.). Formation And Evolution of Black Holes in the Galaxy: Selected Papers with Commentary. River Edge, NJ: World Scientific. p. 55. ISBN 978-981-238-250-4.
Mazzali, P. A.; Röpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae". Science (PDF). 315 (5813): 825–828.arXiv:astro-ph/0702351v1. Bibcode:2007Sci...315..825M. doi:10.1126/science.1136259. PMID 17289993.
Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 44, Accessed Oct. 7, 2013, "...Chandrasekhar limit: The maximum mass of a white dwarf star, about 1.4 times the mass of the Sun. Above this mass, the gravitational pull becomes too great, and the star must collapse to a neutron star or black hole..."
Eric G. Blackman, "Giants of physics found white-dwarf mass limits", Nature 440, 148 (2006)
Michael Nauenberg, "Edmund C. Stoner and the Discovery of the Maximum Mass of White Dwarfs," Journal for the History of Astronomy, Vol. 39, p. 297-312, (2008)
Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710.
Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi:10.1086/143324.
Chandrasekhar, S. (1935). "The Highly Collapsed Configurations of a Stellar Mass (second paper)". Monthly Notices of the Royal Astronomical Society. 95 (3): 207–225. Bibcode:1935MNRAS..95..207C. doi:10.1093/mnras/95.3.207.
Standards for Astronomical Catalogues, Version 2.0, section 3.2.2, web page, accessed 12-I-2007.
Timmes, F. X.; Woosley, S. E.; Weaver, Thomas A. (1996). "The Neutron Star and Black Hole Initial Mass Function". Astrophysical Journal. 457: 834–843.arXiv:astro-ph/9510136. Bibcode:1996ApJ...457..834T. doi:10.1086/176778.
Chandrasekhar, S. (1931). "The Highly Collapsed Configurations of a Stellar Mass". Monthly Notices of the Royal Astronomical Society. 91 (5): 456–466. Bibcode:1931MNRAS..91..456C. doi:10.1093/mnras/91.5.456.
On Stars, Their Evolution and Their Stability, Nobel Prize lecture, Subrahmanyan Chandrasekhar, December 8, 1983.
Lieb, Elliott H.; Yau, Horng-Tzer (1987). "A rigorous examination of the Chandrasekhar theory of stellar collapse" (PDF). Astrophysical Journal. 323: 140–144. Bibcode:1987ApJ...323..140L. doi:10.1086/165813.
Fowler, R. H. (1926). "On Dense Matter". Monthly Notices of the Royal Astronomical Society. 87 (2): 114–122. Bibcode:1926MNRAS..87..114F. doi:10.1093/mnras/87.2.114.
Stoner, Edmund C. (1929). "The Limiting Density of White Dwarf Stars". Philosophical Magazine. 7 (41): 63–70. doi:10.1080/14786440108564713.
Anderson, Wilhelm (1929). "Uber die Grenzdichte der Materie und der Energie". Zeitschrift für Physik. 56 (11–12): 851–856. Bibcode:1929ZPhy...56..851A. doi:10.1007/BF01340146.
Stoner, Edmund C. (1930). "The Equilibrium of Dense Stars". Philosophical Magazine. 9: 944–963.
Stoner, E. C. (1932). "The minimum pressure of a degenerate electron gas". Monthly Notices of the Royal Astronomical Society. 92 (7): 651–661. Bibcode:1932MNRAS..92..651S. doi:10.1093/mnras/92.7.651.
Frenkel, J. (1928). "Anwendung der Pauli-Fermischen Elektronengastheorie auf das Problem der Kohäsionskräfte". Zeitschrift für Physik. 50 (3–4): 234–248. Bibcode:1928ZPhy...50..234F. doi:10.1007/BF01328867..
Yakovlev, D. G. (1994). "The article by Ya I Frenkel' on 'binding forces' and the theory of white dwarfs". Physics-Uspekhi. 37 (6): 609–612. Bibcode:1994PhyU...37..609Y. doi:10.1070/pu1994v037n06abeh000031.
Chandrasekhar's biographical memoir at the National Academy of Sciences, web page, accessed 12-01-2007.
Chandrasekhar, S. (1934). "Stellar Configurations with degenerate Cores". The Observatory. 57: 373–377. Bibcode:1934Obs....57..373C.
On the Theory of Stars, in Collected Papers of L. D. Landau, ed. and with an introduction by D. ter Haar, New York: Gordon and Breach, 1965; originally published in Phys. Z. Sowjet. 1 (1932), 285.
"Meeting of the Royal Astronomical Society, Friday, 1935 January 11". The Observatory. 58: 33–41. 1935. Bibcode:1935Obs....58...33.
Eddington, A. S. (1935). "On "Relativistic Degeneracy"". Monthly Notices of the Royal Astronomical Society. 95 (3): 194–206. Bibcode:1935MNRAS..95..194E. doi:10.1093/mnras/95.3.194a.
Empire of the Stars: Obsession, Friendship, and Betrayal in the Quest for Black Holes, Arthur I. Miller, Boston, New York: Houghton Mifflin, 2005, ISBN 0-618-34151-X; reviewed at The Guardian: The battle of black holes.
"The International Astronomical Union meeting in Paris, 1935". The Observatory. 58: 257–265 [259]. 1935. Bibcode:1935Obs....58..257.
Eddington, A. S. (1935). "Note on "Relativistic Degeneracy"". Monthly Notices of the Royal Astronomical Society. 96: 20–21. Bibcode:1935MNRAS..96...20E. doi:10.1093/mnras/96.1.20.
Eddington, Arthur (1935). "The Pressure of a Degenerate Electron Gas and Related Problems". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 152 (876): 253–272. Bibcode:1935RSPSA.152..253E. doi:10.1098/rspa.1935.0190. JSTOR 96515.
Relativity Theory of Protons and Electrons, Sir Arthur Eddington, Cambridge: Cambridge University Press, 1936, chapter 13.
Eddington, A. S. (1940). "The physics of white dwarf matter". Monthly Notices of the Royal Astronomical Society. 100 (8): 582–594. Bibcode:1940MNRAS.100..582E. doi:10.1093/mnras/100.8.582.
Fundamental Theory, Sir A. S. Eddington, Cambridge: Cambridge University Press, 1946, §43–45.
Woosley, S. E.; Heger, A.; Weaver, T. A. (2002). "The evolution and explosion of massive stars". Reviews of Modern Physics. 74 (4): 1015–1071. Bibcode:2002RvMP...74.1015W. doi:10.1103/revmodphys.74.1015. S2CID 55932331.
Koester, D.; Reimers, D. (1996). "White dwarfs in open clusters. VIII. NGC 2516: a test for the mass-radius and initial-final mass relations". Astronomy and Astrophysics. 313: 810–814. Bibcode:1996A&A...313..810K.
Kurtis A. Williams, M. Bolte, and Detlev Koester 2004 An Empirical Initial-Final Mass Relation from Hot, Massive White Dwarfs in NGC 2168 (M35), Astrophysical Journal 615, pp. L49–L52 arXiv astro-ph/0409447.
Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). "How Massive Single Stars End Their Life". Astrophysical Journal. 591 (1): 288–300.arXiv:astro-ph/0212469. Bibcode:2003ApJ...591..288H. doi:10.1086/375341.
Schaffner-Bielich, Jürgen (2005). "Strange quark matter in stars: a general overview]". Journal of Physics G: Nuclear and Particle Physics. 31 (6): S651–S657.arXiv:astro-ph/0412215. Bibcode:2005JPhG...31S.651S. doi:10.1088/0954-3899/31/6/004.
Lattimer, James M.; Prakash, Madappa (2004). "The Physics of Neutron Stars". Science. 304 (5670): 536–542.arXiv:astro-ph/0405262. Bibcode:2004Sci...304..536L. doi:10.1126/science.1090720. PMID 15105490.
Schneider, Stephen E.; and Arny, Thomas T.; Readings: Unit 66: End of a star's life, Astronomy 122: Birth and Death of Stars, University of Oregon
Hillebrandt, Wolfgang; Niemeyer, Jens C. (2000). "Type IA Supernova Explosion Models". Annual Review of Astronomy and Astrophysics. 38: 191–230.arXiv:astro-ph/0006305. Bibcode:2000ARA&A..38..191H. doi:10.1146/annurev.astro.38.1.191.
Branch, David (21 September 2006). "Astronomy: Champagne supernova". Nature. 443 (7109): 283–284. Bibcode:2006Natur.443..283B. doi:10.1038/443283a. PMID 1698869.
"The weirdest type Ia supernova yet" (Press release). LBL. Retrieved 13 January 2007.
"Champagne supernova challenges ideas about how supernovae work". (Press release). Retrieved 13 January 2007.
Howell, D. Andrew (2006). "The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star". Nature. 443 (7109): 308–311.arXiv:astro-ph/0609616. Bibcode:2006Natur.443..308H. doi:10.1038/nature05103. PMID 16988705.

Hachisu, Izumi; Kato, M.; et al. (2012). "A single degenerate progenitor model for type Ia supernovae highly exceeding the Chandrasekhar mass limit". The Astrophysical Journal. 744 (1): 76–79.arXiv:1106.3510. Bibcode:2012ApJ...744...69H. doi:10.1088/0004-637X/744/1/69. Article 69.

Further reading

On Stars, Their Evolution and Their Stability, Nobel Prize lecture, Subrahmanyan Chandrasekhar, December 8, 1983.
White dwarf stars and the Chandrasekhar limit, Masters' thesis, Dave Gentile, DePaul University, 1995.
Estimating Stellar Parameters from Energy Equipartition, Discusses how to find mass-radius relations and mass limits for white dwarfs using simple energy arguments.


White dwarf

Chandrasekhar limit PG 1159 star Stellar evolution Hertzsprung–Russell diagram Mira variable


Black dwarf Type Ia supernova
Candidates Neutron star
Pulsar Magnetar Related links Stellar black hole
Related links Compact star
Quark star Exotic star Extreme helium star Subdwarf B star Helium planet

In binary

Remnant List Dwarf nova Symbiotic nova Cataclysmic variable star
AM CVn star Polar Intermediate polar X-ray binary
Super soft X-ray source Binary pulsar
X-ray pulsar List Helium flash Carbon detonation


Pulsating Urca process Electron-degenerate matter Quasi-periodic oscillations


Planetary nebula
List RAMBOs White dwarf luminosity function Timeline of white dwarfs, neutron stars, and supernovae


Neutron star

Radio-quiet Pulsar

Single pulsars

Soft gamma repeater Anomalous X-ray Rotating radio transient

Binary pulsars

Binary X-ray pulsar
X-ray binary X-ray burster List Millisecond Be/X-ray Spin-up


Fast radio burst Bondi accretion Chandrasekhar limit Gamma-ray burst Glitch Neutronium Neutron-star oscillation Optical Pulsar kick Quasi-periodic oscillation Relativistic Rp-process Starquake Timing noise Tolman–Oppenheimer–Volkoff limit Urca process


Gamma-ray burst progenitors Asteroseismology Compact star
Quark star Exotic star Supernova
Supernova remnant Related links Hypernova Kilonova Neutron star merger Quark-nova White dwarf
Related links Stellar black hole
Related links Radio star Pulsar planet Pulsar wind nebula Thorne–Żytkow object


LGM-1 Centaurus X-3 Timeline of white dwarfs, neutron stars, and supernovae


Rossi X-ray Timing Explorer Fermi Gamma-ray Space Telescope Compton Gamma Ray Observatory Chandra X-ray Observatory


X-ray pulsar-based navigation Tempo software program Astropulse The Magnificent Seven

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License