The Haag–Kastler axiomatic framework for quantum field theory, introduced by Haag and Kastler (1964), is an application to local quantum physics of C*-algebra theory. Because of this it is also known as algebraic quantum field theory (AQFT). The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those.

Overview

Let Mink be the category of open subsets of Minkowski space M with inclusion maps as morphisms. We are given a covariant functor A {\displaystyle {\mathcal {A}}} {\mathcal {A}} \) from Mink to uC*alg, the category of unital C* algebras, such that every morphism in Mink maps to a monomorphism in uC*alg (isotony).

The Poincaré group acts continuously on Mink. There exists a pullback of this action, which is continuous in the norm topology of \( { {\mathcal {A}}(M) \) (Poincaré covariance).

Minkowski space has a causal structure. If an open set V lies in the causal complement of an open set U, then the image of the maps

\( {\mathcal {A}}(i_{{U,U\cup V}}) \)

and

\( { {\mathcal {A}}(i_{{V,U\cup V}}) \)

commute (spacelike commutativity). If \( { {\bar {U}} \) is the causal completion of an open set U, then \( { {\mathcal {A}}(i_{{U,{\bar {U}}}}) \) is an isomorphism (primitive causality).

A state with respect to a C*-algebra is a positive linear functional over it with unit norm. If we have a state over \( { {\mathcal {A}}(M) \) , we can take the "partial trace" to get states associated with \( { {\mathcal {A}}(U) \) for each open set via the net monomorphism. The states over the open sets form a presheaf structure.

According to the GNS construction, for each state, we can associate a Hilbert space representation of \( { {\mathcal {A}}(M) \) . Pure states correspond to irreducible representations and mixed states correspond to reducible representations. Each irreducible representation (up to equivalence) is called a superselection sector. We assume there is a pure state called the vacuum such that the Hilbert space associated with it is a unitary representation of the Poincaré group compatible with the Poincaré covariance of the net such that if we look at the Poincaré algebra, the spectrum with respect to energy-momentum (corresponding to spacetime translations) lies on and in the positive light cone. This is the vacuum sector.

More recently, the approach has been further implemented to include an algebraic version of quantum field theory in curved spacetime. Indeed, the viewpoint of local quantum physics is in particular suitable to generalize the renormalization procedure to the theory of quantum fields developed on curved backgrounds. Several rigorous results concerning QFT in presence of a black hole have been obtained.

List of researchers in local quantum field theory

Detlev Buchholz

Rudolf Haag

Daniel Kastler

Karl-Henning Rehren

Bert Schroer

Robert Wald

Klaus Fredenhagen

References

Haag, Rudolf; Kastler, Daniel (1964), "An algebraic approach to quantum field theory", Journal of Mathematical Physics, 5: 848–861, Bibcode:1964JMP.....5..848H, doi:10.1063/1.1704187, ISSN 0022-2488, MR 0165864

Haag, Rudolf (1996) [1992], Local quantum physics, Texts and Monographs in Physics (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-61451-7, MR 1405610

External links

Local Quantum Physics Crossroads 2.0 – A network of scientists working on local quantum physics

Papers – A database of preprints on algebraic QFT

Algebraic Quantum Field Theory – AQFT resources at the University of Hamburg

Quantum field theories

Standard

Theories

Chern–Simons Conformal field theory Ginzburg–Landau Kondo effect Local QFT Noncommutative QFT Quantum Yang–Mills Quartic interaction sine-Gordon String theory Toda field Topological QFT Yang–Mills Yang–Mills–Higgs

Models

Chiral Non-linear sigma Schwinger Standard Model Thirring–Wess Wess–Zumino Wess–Zumino–Witten Yukawa

Theories

BCS theory Fermi's interaction Luttinger liquid Top quark condensate

Models

Gross–Neveu Hubbard Nambu–Jona-Lasinio Thirring Thirring–Wess

Related

History Axiomatic QFT Loop quantum gravity Loop quantum cosmology QFT in curved spacetime Quantum chaos Quantum chromodynamics Quantum dynamics Quantum electrodynamics

links Quantum gravity

links Quantum hadrodynamics Quantum hydrodynamics Quantum information Quantum information science

links Quantum logic Quantum thermodynamics

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License