The innermost stable circular orbit (often called the ISCO) is the smallest circular orbit in which a test particle can stably orbit a massive object in general relativity.[1] The location of the ISCO, the ISCO-radius ( \( {\displaystyle r_{\mathrm {isco} }} \) ), depends on the angular momentum (spin) of the central object.

The ISCO plays an important role in black hole accretion disks since it marks the inner edge of the disk.

For a non-spinning massive object, where the gravitational field can be expressed with the Schwarzschild metric, the ISCO is located at,

\( {\displaystyle r_{\mathrm {isco} }={\frac {6\,GM}{c^{2}}}=3R_{S},} \)

where \( {\displaystyle R_{S}} \)is the Schwarzschild radius of the massive object with mass M {\displaystyle M} M. Thus, even for a non-spinning object, the ISCO radius is only three times the Schwarzschild radius, \( {\displaystyle R_{S}} \) , suggesting that only black holes and neutron stars have innermost stable circular orbits outside of their surfaces. As the angular momentum of the central object increases, \( {\displaystyle r_{\mathrm {isco} }} \) decreases.

Circular orbits are still possible between the ISCO and the photon sphere, but they are unstable. The photon sphere has a radius of

\( {\displaystyle r={\frac {3\,GM}{c^{2}}}={\frac {3R_{S}}{2}}.} \)

For a massless test particle like a photon, the only possible circular orbit is exactly at the photon sphere, and is unstable.[2] Inside the photon sphere, no circular orbits exist.
Rotating black holes

The case for rotating black holes is somewhat more complicated. The equatorial ISCO in the Kerr metric depends on whether the orbit is prograde (negative sign below) or retrograde (positive sign):

\( {\displaystyle r_{\mathrm {isco} }={\frac {GM}{c^{2}}}\left(3+Z_{2}\pm {\sqrt {(3-Z_{1})(3+Z_{1}+2Z_{2})}}\right)} \)


\( {\displaystyle Z_{1}=1+{\sqrt[{3}]{1-x^{2}}}\left({\sqrt[{3}]{1+x}}+{\sqrt[{3}]{1-x}}\right)} \)
\( {\displaystyle Z_{2}={\sqrt {3x^{2}+Z_{1}^{2}}}} \)

with \( {\displaystyle x=a/M} \) as the rotation parameter.[3] As the rotation rate of the black hole increases the retrograde ISCO increases towards \( {\displaystyle 9GM/c^{2}} \) (4.5 times the a=0 horizon radius) while the prograde ISCO decreases towards the horizon radius and appears to merge with it for an extremal black hole (however, this later merger is illusory and an artefact of using Boyer-Lindquist coordinates [4]).

If the particle is also spinning there is a further split in ISCO radius depending on whether the spin is aligned with or against the black hole rotation.[5]

Misner, Charles; Thorne, Kip S.; Wheeler, John (1973). Gravitation. W. H. Freeman and Company. ISBN 0-7167-0344-0.
Carroll, Sean M. (December 1997). "Lecture Notes on General Relativity: The Schwarzschild Solution and Black Holes".arXiv:gr-qc/9712019. Bibcode:1997gr.qc....12019C. Retrieved 2017-04-11.
Bardeen, James M.; Press, William H.; Teukolsky, Saul A. (1972). "Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation". The Astrophysical Journal. 178: 347–370. Bibcode:1972ApJ...178..347B. doi:10.1086/151796.
Hirata, Christopher M. (December 2011). "Lecture XXVII: Kerr black holes: II. Precession, circular orbits, and stability" (PDF). Caltech. Retrieved 5 March 2018.

Jefremov, Paul I; Tsupko, Oleg Yu; Bisnovatyi-Kogan, Gennady S (15 June 2015). "Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times". Physical Review D. 91 (12): 124030.arXiv:1503.07060. Bibcode:2015PhRvD..91l4030J. doi:10.1103/PhysRevD.91.124030. S2CID 119233768.

External links

Leo C. Stein, Kerr calculator V2 [1]


Black holes

Schwarzschild Rotating Charged Virtual Kugelblitz Primordial Planck particle


Extremal Electron Stellar
Microquasar Intermediate-mass Supermassive
Active galactic nucleus Quasar Blazar


Stellar evolution Gravitational collapse Neutron star
Related links Tolman–Oppenheimer–Volkoff limit White dwarf
Related links Supernova
Related links Hypernova Gamma-ray burst Binary black hole


Gravitational singularity
Ring singularity Theorems Event horizon Photon sphere Innermost stable circular orbit Ergosphere
Penrose process Blandford–Znajek process Accretion disk Hawking radiation Gravitational lens Bondi accretion M–sigma relation Quasi-periodic oscillation Thermodynamics
Immirzi parameter Schwarzschild radius Spaghettification


Black hole complementarity Information paradox Cosmic censorship ER=EPR Final parsec problem Firewall (physics) Holographic principle No-hair theorem


Schwarzschild (Derivation) Kerr Reissner–Nordström Kerr–Newman Hayward


Nonsingular black hole models Black star Dark star Dark-energy star Gravastar Magnetospheric eternally collapsing object Planck star Q star Fuzzball


Optical black hole Sonic black hole


Black holes Most massive Nearest Quasars Microquasars


Black Hole Initiative Black hole starship Compact star Exotic star
Quark star Preon star Gamma-ray burst progenitors Gravity well Hypercompact stellar system Membrane paradigm Naked singularity Quasi-star Rossi X-ray Timing Explorer Timeline of black hole physics White hole Wormhole



Principle of relativity (Galilean relativity Galilean transformation) Special relativity Doubly special relativity


Frame of reference Speed of light Hyperbolic orthogonality Rapidity Maxwell's equations Proper length Proper time Relativistic mass


Lorentz transformation


Time dilation Mass–energy equivalence Length contraction Relativity of simultaneity Relativistic Doppler effect Thomas precession Ladder paradox Twin paradox


Light cone World line Minkowski diagram Biquaternions Minkowski space

Spacetime curvature.png

Introduction Mathematical formulation


Equivalence principle Riemannian geometry Penrose diagram Geodesics Mach's principle


ADM formalism BSSN formalism Einstein field equations Linearized gravity Post-Newtonian formalism Raychaudhuri equation Hamilton–Jacobi–Einstein equation Ernst equation


Black hole Event horizon Singularity Two-body problem

Gravitational waves: astronomy detectors (LIGO and collaboration Virgo LISA Pathfinder GEO) Hulse–Taylor binary

Other tests: precession of Mercury lensing redshift Shapiro delay frame-dragging / geodetic effect (Lense–Thirring precession) pulsar timing arrays


Brans–Dicke theory Kaluza–Klein Quantum gravity


Cosmological: Friedmann–Lemaître–Robertson–Walker (Friedmann equations) Kasner BKL singularity Gödel Milne

Spherical: Schwarzschild (interior Tolman–Oppenheimer–Volkoff equation) Reissner–Nordström Lemaître–Tolman

Axisymmetric: Kerr (Kerr–Newman) Weyl−Lewis−Papapetrou Taub–NUT van Stockum dust discs

Others: pp-wave Ozsváth–Schücking metric


Poincaré Lorentz Einstein Hilbert Schwarzschild de Sitter Weyl Eddington Friedmann Lemaître Milne Robertson Chandrasekhar Zwicky Wheeler Choquet-Bruhat Kerr Zel'dovich Novikov Ehlers Geroch Penrose Hawking Taylor Hulse Bondi Misner Yau Thorne Weiss others

► Theory of relativity

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License