ART

Michael Stanley Whittingham (born 22 December 1941) is a British-American chemist. He is a professor of chemistry and director of both the Institute for Materials Research and the Materials Science and Engineering program at Binghamton University, State University of New York. He also serves as director of the Northeastern Center for Chemical Energy Storage (NECCES) of the U.S. Department of Energy at Binghamton. He was awarded the Nobel Prize in Chemistry in 2019 alongside Akira Yoshino and John B. Goodenough.[1][2]

Whittingham is a key figure in the history of lithium-ion batteries, which are used in everything from mobile phones to electric vehicles. He discovered intercalation electrodes and thoroughly described intercalation reactions in rechargeable batteries in the 1970s. He holds the patents on the concept of using intercalation chemistry in high power-density, highly reversible lithium-ion batteries. He also invented the first rechargeable lithium metal battery (LMB), patented in 1977 and assigned to Exxon for commercialization in small devices and electric vehicles. Whittingham's rechargeable lithium metal battery is based on a LiAl anode and an intercalation-type TiS2 cathode. His work on lithium batteries laid the foundation for others' developments, so he is called the founding father of lithium-ion batteries.[3]
Education and career

Whittingham was born in Nottingham, England, on 22 December 1941.[4][5] He was educated at Stamford School from 1951 to 1960, before going up to New College, Oxford to read chemistry. At the University of Oxford, he took his BA (1964), MA (1967), and DPhil (1968).[6] After completing his graduate studies, Whittingham became a postdoctoral fellow at Stanford University.[7] He worked 16 years for Exxon Research & Engineering Company[7] and four years working for Schlumberger prior to becoming a professor at Binghamton University.[6]

From 1994 to 2000, he served as the university's vice provost for research.[4] He also served as vice-chair of the Research Foundation of the State University of New York for six years. He is a Distinguished Professor of Chemistry and Materials Science and Engineering at Binghamton University.[7] Whittingham was named Chief Scientific Officer of NAATBatt International in 2017.[4]

Whittingham co-chaired the DOE study of Chemical Energy Storage in 2007,[8] and is a director of the Northeastern Center for Chemical Energy Storage (NECCES), a U.S. Department of Energy Energy Frontier Research Center (EFRC) at Binghamton. In 2014, NECCES was awarded $12.8 million, from the U.S. Department of Energy to help accelerate scientific breakthroughs needed to build the 21st-century economy. In 2018, NECCES was granted another $3 million by the Department of Energy to continue its research on batteries. The NECCES team is using the funding to improve energy-storage materials and to develop new materials that are "cheaper, environmentally friendly, and able to store more energy than current materials can".[9]
Research

Whittingham conceived the intercalation electrode. Exxon manufactured Whittingham's lithium-ion battery in the 1970s, based on a titanium disulfide cathode and a lithium-aluminum anode.[10] The battery had high energy density and the diffusion of lithium ions into the titanium disulfide cathode was reversible, making the battery rechargeable. In addition, titanium disulfide has a particularly fast rate of lithium ion diffusion into the crystal lattice. Exxon threw its resources behind the commercialization of a Li/LiClO4/ TiS2 battery. However, safety concerns led Exxon to end the project. Whittingham and his team continued to publish their work in academic journals of electrochemistry and solid-state physics. He left Exxon in 1984 and spent four years at Schlumberger as a manager. In 1988, he became Professor at the Chemistry Department, Binghamton University, U.S. to pursue his academic interests.

"All these batteries are called intercalation batteries. It’s like putting jam in a sandwich. In the chemical terms, it means you have a crystal structure, and we can put lithium ions in, take them out, and the structure’s exactly the same afterwards," Whittingham said. "We retain the crystal structure. That’s what makes these lithium batteries so good, allows them to cycle for so long."[10]

Lithium batteries have limited capacity because less than one lithium-ion/electron is reversibly intercalated per transition metal redox center. To achieve higher energy densities, one approach is to go beyond the one-electron redox intercalation reactions. Whittingham's research has advanced to multi-electron intercalation reactions, which can increase the storage capacity by intercalating multiple lithium ions. A few multi-electron intercalation materials have been successfully developed by Whittingham, like LiVOPO4/VOPO4. The multivalent vanadium cation (V3+<->V5+) plays an important role to accomplish the multi-electron reactions. These promising materials shine lights on the battery industry to increase energy density rapidly.

Whittingham received the Young Author Award from The Electrochemical Society in 1971,[11] the Battery Research Award in 2003,[12] and was elected a Fellow in 2004.[13] In 2010, he was listed as one of the Top 40 innovators for contributions to advancing green technology by Greentech Media.[14] In 2012, Whittingham received the IBA Yeager Award for Lifetime Contribution to Lithium Battery Materials Research,[15] and he was elected a Fellow of Materials Research Society in 2013.[16] He was listed along with John B. Goodenough, for pioneering research leading to the development of the lithium-ion battery on a list of Clarivate Citation Laureates for the Nobel Prize in Chemistry by Thomson Reuters in 2015.[10][17] In 2018, Whittingham was elected to the National Academy of Engineering, "for pioneering the application of intercalation chemistry for energy storage materials."[18]

In 2019, Whittingham, along with John B. Goodenough and Akira Yoshino, was awarded the 2019 Nobel Prize in Chemistry "for the development of lithium-ion batteries."[1][2]
Personal life

Stanley is married to Dr. Georgina Whittingham, a professor of Spanish at the State University of New York, Oswego. He has two children, Michael Whittingham and Jenniffer Whittingham-Bras.[19][20]
Recognition

2007 Chancellor's Award for Excellence in Scholarship and Creative Activities, and Outstanding Research Award, State University of New York[21]
2010 Award for Lifetime Contributions from the American Chemical Society[4]
2015 Thomson Reuters Citation Laureate[17]
2017 Senior Scientist Award from the International Society for Solid State Ionics[22]
2018 Turnbull Award from the Materials Research Society[23]
2018 Member National Academy of Engineering[24]
2019 Nobel Prize in Chemistry with John B. Goodenough and Akira Yoshino[1]

Books

J. B. Goodenough & M. S. Whittingham (1977). Solid State Chemistry of Energy Conversion and Storage. American Chemical Society Symposium Series #163. ISBN 978-0-8412-0358-7.
G. G. Libowitz & M. S. Whittingham (1979). Materials Science in Energy Technology. Academic Press. ISBN 978-0-12-447550-2.
M. S. Whittingham & A. J. Jacobson (1984). Intercalation Chemistry. Academic Press. ISBN 978-0-12-747380-2.
D. L. Nelson, M. S. Whittingham and T. F. George (1987). Chemistry of High Temperature Superconductors. American Chemical Society Symposium Series #352. ISBN 978-0-8412-1431-6.
M. A. Alario-Franco, M. Greenblatt, G. Rohrer and M. S. Whittingham (2003). Solid-state chemistry of inorganic materials IV. Materials Research Society. ISBN 978-1-55899-692-2.

Most-cited papers

(As of 2019:[25])

Whittingham, M. S. (1976). "Electrical energy storage and intercalation chemistry". Science. 192 (4244): 1126–1127. Bibcode:1976Sci...192.1126W. doi:10.1126/science.192.4244.1126. PMID 17748676. S2CID 36607505.
Whittingham, M. Stanley (1976). "The role of ternary phases in cathode reactions". Journal of the Electrochemical Society. 123 (3): 315–320. Bibcode:1976JElS..123..315W. doi:10.1149/1.2132817.
Whittingham, M.Stanley (1978). "Chemistry of intercalation compounds: metal guests in chalcogenide hosts". Progress in Solid State Chemistry. 12 (1): 41–99. doi:10.1016/0079-6786(78)90003-1.
Whittingham, M. Stanley (October 2004). "Lithium batteries and cathode materials" (PDF). Chemical Reviews. 104 (10): 4271–4301. doi:10.1021/cr020731c. PMID 15669156. S2CID 888879.
Whittingham, M. Stanley (October 2014). "Ultimate limits to intercalation reactions for lithium batteries". Chemical Reviews. 114 (23): 11414–11443. doi:10.1021/cr5003003. PMID 25354149.
Chirayil, Thomas; Zavalij, Peter Y.; Whittingham, M. Stanley (October 1998). "Hydrothermal synthesis of vanadium oxides". Chemistry of Materials. 10 (10): 2629–2640. doi:10.1021/cm980242m.
Zavalij, Peter Y.; Whittingham, M. Stanley (October 1999). "Structural chemistry of vanadium oxides with open frameworks". Acta Crystallographica Section B. 55 (5): 627–663. doi:10.1107/S0108768199004000. PMID 10927405.
Chen, Rongji; Zavalij, Peter; Whittingham, M. Stanley (June 1996). "Hydrothermal Synthesis and Characterization of KxMnO2·yH2O". Chemistry of Materials. 8 (6): 1275–1280. doi:10.1021/cm950550.
Janauer, Gerald G.; Dobley, Arthur; Guo, Jingdong; Zavalij, Peter; Whittingham, M. Stanley (August 1996). "Novel tungsten, molybdenum, and vanadium oxides containing surfactant ions". Chemistry of Materials. 8 (8): 2096–2101. doi:10.1021/cm960111q.
Yang, Shoufeng; Song, Yanning; Zavalij, Peter Y.; Stanley Whittingham, M. (March 2002). "Reactivity, stability and electrochemical behavior of lithium iron phosphates". Electrochemistry Communications. 4 (3): 239–244. doi:10.1016/S1388-2481(01)00298-3.
Yang, Shoufeng; Zavalij, Peter Y.; Stanley Whittingham, M. (September 2001). "Hydrothermal synthesis of lithium iron phosphate cathodes". Electrochemistry Communications. 3 (9): 505–508. doi:10.1016/S1388-2481(01)00200-4.
Whittingham, M. Stanley; Guo, Jing-Dong; Chen, Rongji; Chirayil, Thomas; Janauer, Gerald; Zavalij, Peter (January 1995). "The hydrothermal synthesis of new oxide materials". Solid State Ionics. 75: 257–268. doi:10.1016/0167-2738(94)00220-M.
Petkov, V.; Zavalij, P. Y.; Lutta, S.; Whittingham, M. S.; Parvanov, V.; Shastri, S. (February 2004). "Structure beyond Bragg: Study of V2O5 nanotubes" (PDF). Physical Review B. 69 (8): 085410 (1–6). Bibcode:2004PhRvB..69h5410P. doi:10.1103/PhysRevB.69.085410. Archived from the original (PDF) on 9 October 2019.
"Vanadium modified LiFePO4 cathode for Li-ion batteries". Electrochemical and Solid-State Letters. 12 (2): A33–A38. February 2009. doi:10.1149/1.3039795.
Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.; Hautier, Geoffroy; Ceder, Gerbrand; Whittingham, M. Stanley (December 2010). "Iron and Manganese Pyrophosphates as cathodes for Lithium-Ion batteries" (PDF). Chemistry of Materials. 23 (2): 293–300. doi:10.1021/cm102922q.

References

"Nobel Prize in Chemistry Announcement". The Nobel Prize. Retrieved 9 October 2019.
Specia, Megan (9 October 2019). "Nobel Prize in Chemistry Honors Work on Lithium-Ion Batteries". The New York Times. Retrieved 9 October 2019.
Ramanan, A. (10 November 2019). "Development of lithium-ion batteries – 2019 Nobel Prize for Chemistry" (PDF). Current Science. 117 (9): 1416–1418. Archived from the original on 5 December 2019. Retrieved 16 March 2021.
"Stanley Whittingham, Ph.D." Marquis Who's Who Top Educators. 23 January 2019. Archived from the original on 10 October 2019. Retrieved 10 October 2019.
"M. Stanley Whittingham: Facts". Nobel Foundation. Retrieved 20 October 2019.
"Dr. M. Stanley Whittingham". Binghamton University. Archived from the original on 22 August 2019. Retrieved 22 August 2019.
Yarosh, Ryan (9 October 2019). "Binghamton University professor wins Nobel Prize in Chemistry". Binghamton University. Retrieved 10 October 2019.
Desmond, Kevin (16 May 2016). Innovators in Battery Technology: Profiles of 93 Influential Electrochemists. Jefferson, North Carolina: McFarland. p. 240. ISBN 9780786499335. Retrieved 10 October 2019.
Ellis, Katie (19 June 2014). "Federal grant boosts smart energy research". Binghamton University Division of Research. Retrieved 10 October 2019.
"Binghamton professor recognized for energy research". The Research Foundation for the State University of New York. Retrieved 10 October 2019.
"Norman Hackerman Young Author Award". The Electrochemical Society. Archived from the original on 22 August 2019. Retrieved 22 August 2019.
"Battery Division Research Award". The Electrochemical Society. Archived from the original on 22 August 2019. Retrieved 22 August 2019.
"Fellow of The Electrochemical Society". The Electrochemical Society. Retrieved 10 October 2019.
Kanellos, Michael (20 April 2010). "The Greentech Hall of Fame". Greentech Media. Retrieved 10 October 2019.
"Awards". International Battery Materials Association. Retrieved 10 October 2019.
"2013 MRS Fellows". Materials Research Society. Archived from the original on 10 October 2019. Retrieved 10 October 2019.
Mackof, Alexandra. "BU chemistry professor named as Nobel Prize hopeful". Pipe Dream. Retrieved 10 October 2019.
"Dr. M. Stanley Whittingham". National Academy of Engineering. Retrieved 10 October 2019.
"2019 Nobel Prize winner: Dr. M. Stanley Whittingham talks award, impact, batteries". Binghamton Press & Sun-Bulletin. Retrieved 12 October 2019.
"Faculty profile, Modern Languages: Georgina Whittingham". State University of New York at Oswego. Retrieved 1 January 2020.
"Research & Scholarship Award Recipients by Region". SUNY Foundation. 2 May 2007. Archived from the original on 22 March 2020. Retrieved 27 October 2019.
"Prof. M. Stanley Whittingham". internationalsocietysolidstateionics.org. Retrieved 27 October 2019.
"Stan Whittingham selected for 2018 David Turnbull Lectureship Award". MRS Bulletin. 43 (11): 871. November 2018. doi:10.1557/mrs.2018.273. ISSN 0883-7694.
"Dr. M. Stanley Whittingham". NAE Website. Retrieved 27 October 2019.

"Stanley Whittingham". Google Scholar. Retrieved 10 October 2019.

External links
Scholia has a profile for M. Stanley Whittingham (Q285062).

M. Stanley Whittingham's profile at Binghamton University website
M. Stanley Whittingham's interview [1] at École supérieure de physique et de chimie industrielles de la ville de Paris history of science website
M. Stanley Whittingham on Nobelprize.org Edit this at Wikidata including the Nobel Lecture on Sunday 8 December 2019 The Origins of the Lithium Battery

vte

Laureates of the Nobel Prize in Chemistry
1901–1925

1901: Jacobus van 't Hoff 1902: Emil Fischer 1903: Svante Arrhenius 1904: William Ramsay 1905: Adolf von Baeyer 1906: Henri Moissan 1907: Eduard Buchner 1908: Ernest Rutherford 1909: Wilhelm Ostwald 1910: Otto Wallach 1911: Marie Curie 1912: Victor Grignard / Paul Sabatier 1913: Alfred Werner 1914: Theodore Richards 1915: Richard Willstätter 1916 1917 1918: Fritz Haber 1919 1920: Walther Nernst 1921: Frederick Soddy 1922: Francis Aston 1923: Fritz Pregl 1924 1925: Richard Zsigmondy


1926–1950

1926: Theodor Svedberg 1927: Heinrich Wieland 1928: Adolf Windaus 1929: Arthur Harden / Hans von Euler-Chelpin 1930: Hans Fischer 1931: Carl Bosch / Friedrich Bergius 1932: Irving Langmuir 1933 1934: Harold Urey 1935: Frédéric Joliot-Curie / Irène Joliot-Curie 1936: Peter Debye 1937: Norman Haworth / Paul Karrer 1938: Richard Kuhn 1939: Adolf Butenandt / Leopold Ružička 1940 1941 1942 1943: George de Hevesy 1944: Otto Hahn 1945: Artturi Virtanen 1946: James B. Sumner / John Northrop / Wendell Meredith Stanley 1947: Robert Robinson 1948: Arne Tiselius 1949: William Giauque 1950: Otto Diels / Kurt Alder

1951–1975

1951: Edwin McMillan / Glenn T. Seaborg 1952: Archer Martin / Richard Synge 1953: Hermann Staudinger 1954: Linus Pauling 1955: Vincent du Vigneaud 1956: Cyril Hinshelwood / Nikolay Semyonov 1957: Alexander Todd 1958: Frederick Sanger 1959: Jaroslav Heyrovský 1960: Willard Libby 1961: Melvin Calvin 1962: Max Perutz / John Kendrew 1963: Karl Ziegler / Giulio Natta 1964: Dorothy Hodgkin 1965: Robert Woodward 1966: Robert S. Mulliken 1967: Manfred Eigen / Ronald Norrish / George Porter 1968: Lars Onsager 1969: Derek Barton / Odd Hassel 1970: Luis Federico Leloir 1971: Gerhard Herzberg 1972: Christian B. Anfinsen / Stanford Moore / William Stein 1973: Ernst Otto Fischer / Geoffrey Wilkinson 1974: Paul Flory 1975: John Cornforth / Vladimir Prelog

1976–2000

1976: William Lipscomb 1977: Ilya Prigogine 1978: Peter D. Mitchell 1979: Herbert C. Brown / Georg Wittig 1980: Paul Berg / Walter Gilbert / Frederick Sanger 1981: Kenichi Fukui / Roald Hoffmann 1982: Aaron Klug 1983: Henry Taube 1984: Robert Merrifield 1985: Herbert A. Hauptman / Jerome Karle 1986: Dudley R. Herschbach / Yuan T. Lee / John Polanyi 1987: Donald J. Cram / Jean-Marie Lehn / Charles J. Pedersen 1988: Johann Deisenhofer / Robert Huber / Hartmut Michel 1989: Sidney Altman / Thomas Cech 1990: Elias Corey 1991: Richard R. Ernst 1992: Rudolph A. Marcus 1993: Kary Mullis / Michael Smith 1994: George Olah 1995: Paul J. Crutzen / Mario Molina / F. Sherwood Rowland 1996: Robert Curl / Harold Kroto / Richard Smalley 1997: Paul D. Boyer / John E. Walker / Jens Christian Skou 1998: Walter Kohn / John Pople 1999: Ahmed Zewail 2000: Alan J. Heeger / Alan MacDiarmid / Hideki Shirakawa

2001–present

2001: William Knowles / Ryoji Noyori / K. Barry Sharpless 2002: John B. Fenn / Koichi Tanaka / Kurt Wüthrich 2003: Peter Agre / Roderick MacKinnon 2004: Aaron Ciechanover / Avram Hershko / Irwin Rose 2005: Robert H. Grubbs / Richard R. Schrock / Yves Chauvin 2006: Roger D. Kornberg 2007: Gerhard Ertl 2008: Osamu Shimomura / Martin Chalfie / Roger Y. Tsien 2009: Venkatraman Ramakrishnan / Thomas A. Steitz / Ada E. Yonath 2010: Richard F. Heck / Akira Suzuki / Ei-ichi Negishi 2011: Dan Shechtman 2012: Robert Lefkowitz / Brian Kobilka 2013: Martin Karplus / Michael Levitt / Arieh Warshel 2014: Eric Betzig / Stefan Hell / William E. Moerner 2015: Tomas Lindahl / Paul L. Modrich / Aziz Sancar 2016: Jean-Pierre Sauvage / Fraser Stoddart / Ben Feringa 2017: Jacques Dubochet / Joachim Frank / Richard Henderson 2018: Frances Arnold / Gregory Winter / George Smith 2019: John B. Goodenough / M. Stanley Whittingham / Akira Yoshino 2020: Emmanuelle Charpentier / Jennifer Doudna 2021: David MacMillan / Benjamin List 2022: Carolyn R. Bertozzi / Morten P. Meldal / Karl Barry Sharpless 2023: Moungi G. Bawendi / Louis E. Brus / Alexei I. Ekimov

Chemistry Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License