ART

This is a list of important publications in physics, organized by field.

Some reasons why a particular publication might be regarded as important:

Topic creator – A publication that created a new topic
Breakthrough – A publication that changed scientific knowledge significantly
Influence – A publication which has significantly influenced the world or has had a massive impact on the teaching of physics.

Applied physics
Accelerator physics
Main article: Accelerator physics

Ising, G. (1924). "Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl". Arkiv för matematik, astronomi och fysik (in German). 18 (30): 1–4.

The Swedish physicist Gustav Ising was the first one to publish the basic concept of a linear accelerator (in this case, as part of a cathode ray tube).

Widerøe, R. (1928). "Über ein neues Prinzip zur Herstellung hoher Spannungen". Archiv für Elektrotechnik (in German). 21 (4): 387–406. doi:10.1007/BF01656341. S2CID 109942448.

The Norwegian physicist Rolf Widerøe took Ising's idea and expanded it. Later, he built the first operational linear accelerator.

Kerst, D. W. (1941). "The Acceleration of Electrons by Magnetic Induction" (PDF). Physical Review. 60 (1): 47–53. Bibcode:1941PhRv...60...47K. doi:10.1103/PhysRev.60.47.
Kerst, D. W.; Serber, R. (1941). "Electronic Orbits in the Induction Accelerator". Physical Review. 60 (1): 53–58. Bibcode:1941PhRv...60...53K. doi:10.1103/PhysRev.60.53.

These two articles describe the betatron concept and the first experimental data of a working betatron, built by Donald William Kerst.

Courant, E. D.; Livingston, M. S.; Snyder, H. S. (1952). "The Strong-Focusing Synchrotron—A New High Energy Accelerator". Physical Review. 88 (5): 1190–1196. Bibcode:1952PhRv...88.1190C. doi:10.1103/PhysRev.88.1190. hdl:2027/mdp.39015086454124.
Courant, E. D.; Snyder, H. S. (1958). "Theory of the alternating-gradient synchrotron" (PDF). Annals of Physics. 3 (1): 1–48. Bibcode:2000AnPhy.281..360C. doi:10.1006/aphy.2000.6012.

These publications were the first to introduce the idea of strong focusing to particle beams, enabling the transition from compact circular accelerator concepts to separate-function magnet devices like synchrotrons, storage rings and particle colliders.

Biophysics

Schrödinger, E. W. (1944). What Is Life? The Physical Aspect of the Living Cell. Cambridge University Press. ISBN 0-521-42708-8.
Turing, A. M. (1952). "The Chemical Basis of Morphogenesis". Philosophical Transactions of the Royal Society of London B. 237 (641): 37–72. doi:10.1098/rstb.1952.0012.
Perutz, M. F. (1978). "Electrostatic effects in proteins". Science. 201 (4362): 1187–1191. Bibcode:1978Sci...201.1187P. doi:10.1126/science.694508. PMID 694508.
Cantor, C. R.; Schimmel, P. R. (1980). Biophysical Chemistry. Vols. 1–3. W. H. Freeman. ISBN 0-7167-1188-5 (Vol. 1), ISBN 0-7167-1190-7 (Vol. 2), ISBN 0-7167-1192-3 (Vol. 3)
Tributsch, H. (1982). How Life Learned to Live: Adaptation in Nature. MIT Press. ISBN 978-0-262-20045-5.
Glaser, R. (2001). Biophysics (5th Revised ed.). Springer. ISBN 978-3-540-67088-9.
Cotterill, R. M. J. (2002). Biophysics: An Introduction. Wiley. ISBN 978-0-471-48538-4.
Nelson, P. C. (2007). Biological Physics (Updated ed.). W. H. Freeman. ISBN 978-0-7167-9897-2.

Cell

Phillips, R.; Kondev, J.; Theriot, J. (2008). Physical Biology of the Cell. Garland Science. ISBN 978-0-8153-4163-5.

Mathematical

Rashevsky, N. (1960). Mathematical Biophysics, Volume 1 (3rd ed.). Dover Publications. ISBN 978-0-486-60574-6.
Rashevsky, N. (1960). Mathematical Biophysics, Volume 2 (3rd ed.). Dover Publications. ISBN 978-0-486-60575-3.

Medical

Ruch, T. C.; Fulton, J. F. (1974). Medical Physiology and Biophysics. Saunders. ISBN 978-0-7216-7818-4.
Haacke, E. M.; Brown, R. W.; Thompson, M. R.; Venkatesan, R. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley–Liss. ISBN 978-0-471-35128-3.

An influential graduate textbook in MRI by some of the principal advancers of the field.

Hobbie, R. K.; Roth, B. J. (2006). Intermediate Physics for Medicine and Biology (4th ed.). Springer. ISBN 978-0-387-30942-2.

Molecular

Perutz, M. F. (1962). Proteins and Nucleic Acids. Elsevier.
Perutz, M. F. (1969). "The haemoglobin molecule". Proceedings of the Royal Society B. 173 (31): 113–40. Bibcode:1969RSPSB.173..113P. doi:10.1098/rspb.1969.0043. PMID 4389425. S2CID 22104752.
Sneppen, K.; Zocchi, G. (2005). Physics in Molecular Biology. Cambridge University Press. ISBN 978-0-521-84419-2.

Neurophysics

Hodgkin, A. L.; Huxley, A. F. (1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". The Journal of Physiology. 117 (4): 500–44. doi:10.1113/jphysiol.1952.sp004764. PMC 1392413. PMID 12991237. Describes the Hodgkin-Huxley model of action potentials in neurons.
Hodgkin, A. L. (1964). The conduction of the nervous impulse. Liverpool University Press. ISBN 978-0853230618.

Plant

Govindjee (1975). Bioenergetics of Photosynthesis. Academic Press. ISBN 978-0-12-294350-8.

Geophysics
See also: Geophysics and History of geophysics

Gilbert, W. (1600). De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure [On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth] (in Latin). Peter Short.
English translation: Gilbert, W. (1991). De Magnete. Dover Publications. ISBN 978-0-486-26761-6. Republication of the 1893 unabridged and unaltered translation by Paul Fleury Mottelay.

Early description of magnetism from an Elizabethan scientist consisting of six books. Erroneously attributes magnetism as causing the motion of bodies in the Solar system.[1]

Chapman, S.; Bartels, J. (1940). Geomagnetism Volume 1: Geomagnetic and Related Phenomena. Clarendon Press. ASIN B002K07MAO. OCLC 499431969.
Chapman, S.; Bartels, J. (1940). Geomagnetism Volume 2: Analysis of the Data and Physical Theories. Clarendon Press. ASIN B0020TCMR8. OCLC 458641769.

A classic reference on the Earth's magnetic field and related topics in meteorology, solar and lunar physics, the aurora, techniques of spherical harmonic analysis and treatment of periodicities in geophysical data.[2] Its comprehensive summaries made it the standard reference on geomagnetism and the ionosphere for at least 2 decades.[3]

Yilmaz, Ö. (1999). Seismic data processing (9th ed.). Society of Exploration Geophysicists. ISBN 978-0-931830-40-2.

Up to date account of seismic data processing in the petroleum geophysics industry.

Physics of computation
See also: Physics of computation

Feynman, R. P. (1982). "Simulating physics with computers". International Journal of Theoretical Physics. 21 (6–7): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179. S2CID 124545445.

Develops theory of a digital computer as an efficient universal computing device.

Lloyd, S. (2000). "Ultimate physical limits of computation". Nature. 406 (6799): 1047–1054.arXiv:quant-ph/9908043. Bibcode:2000Natur.406.1047L. doi:10.1038/35023282. PMID 10984064. S2CID 75923.

Plasma physics
See also: Plasma physics

Langmuir, I. (1961). The Collected Works of Irving Langmuir Volume 3: Thermionic Phenomena: Papers from 1916–1937. Pergamon Press.
Langmuir, I. (1961). The Collected Works of Irving Langmuir Volume 4: Electrical Discharges: Papers from 1923–1931. Pergamon Press.

These two volumes from Nobel Prize winning scientist Irving Langmuir, include his early published papers resulting from his experiments with ionized gases (i.e. plasma). The books summarise many of the basic properties of plasmas. Langmuir coined the word plasma in about 1928.

Alfvén, H.; Fälthammar, C.-G. (1963). Cosmical Electrodynamics. Oxford University Press.

Hannes Alfvén won the Nobel Prize for his development of magnetohydrodynamics (MHD) the science that models plasma as fluids. This book lays down the ground work, but also shows that MHD may be inadequate for low-density plasmas such as space plasmas.

Astronomy and astrophysics

Copernicus, Nicolaus (1543). De revolutionibus orbium coelestium [On the Revolutions of the Heavenly Spheres] (in Latin). Nuremberg: Johannes Petreius. p. 405.

Favoured the heliocentric model (first advanced by Aristarchus) over the Ptolemaic model of the solar system; sometimes credited with starting the Scientific Revolution in the Western world.

Kepler, Johannes (1609). Astronomia nova [New Astronomy] (in Latin). (Available online). Prague.

— (1992). New Astronomy. Translated by William H. Donahue. Cambridge: Cambridge University Press. ISBN 978-0-521-30131-2.

Provided strong arguments for heliocentrism and contributed valuable insight into the movement of the planets, including the first mention of their elliptical path and the change of their movement to the movement of free floating bodies as opposed to objects on rotating spheres (two of Kepler's laws). One of the most important works of the Scientific Revolution.[4]

Kepler, Johannes (1619). Harmonices Mundi [Harmony of the World] (in Latin). (Available online).

— (1997). The harmony of the world. Translated into English with an introduction and notes by E. J. Aiton, A. M. Duncan and J. V. Field. Philadelphia: American Philosophical Society. ISBN 978-0-87169-209-2.

Developed the third of Kepler's laws.

Astrophysics
See also: Astrophysics

Astrophysics employs physical principles "to ascertain the nature of the heavenly bodies, rather than their positions or motions in space."[5]

Burbidge, E. M.; Burbidge, G. R.; Fowler, F.; Hoyle, F. (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547.

A landmark article of stellar physics, analysing several key processes that might be responsible for the synthesis of chemical elements in nature and their relative abundances; it is credited with originating what is now the theory of stellar nucleosynthesis.

Faber, Sandra M.; Jackson, Robert (1976). "Velocity dispersions and mass-to-light ratios for elliptical galaxies". Astrophysical Journal. 204 (6): 668. Bibcode:1976ApJ...204..668F. doi:10.1086/154215.

Introduction of the Faber–Jackson law relating galaxy luminosity and velocity dispersion.

Tully, R. B; Fisher, J. R. (1977). "A new method of determining distances to galaxies". Astronomy and Astrophysics. 54 (3): 661–673. Bibcode:1977A&A....54..661T.

Introduction of the Tully–Fisher relation between galaxy luminosity and rotation-curve amplitude.

Ferrarese, Laura; Merritt, David (2000). "A fundamental relation between supermassive black holes and their host galaxies". Astrophysical Journal Letters. 539 (1): L9–L12.arXiv:astro-ph/0006053. Bibcode:2000ApJ...539L...9F. doi:10.1086/312838. S2CID 6508110.

Introduction of the M-sigma relation between black hole mass and galaxy velocity dispersion.

Cosmology
See also: Physical cosmology

A. D. Sakharov (1967). "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe". Journal of Experimental and Theoretical Physics Letters. 5: 24–27.

Introduced the conditions necessary for baryogenesis, by making use of recent results (discovery of CP violation, etc). Republished in A. D. Sakharov (1991). "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe". Soviet Physics Uspekhi (in Russian and English). 34 (5): 392–393. Bibcode:1991SvPhU..34..392S. doi:10.1070/PU1991v034n05ABEH002497..

Kolb, Edward; Turner, Michael (1988). The Early Universe. Addison–Wesley. ISBN 978-0-201-11604-5.

Reference textbook on cosmology, discussing both observational and theoretical issues.

J. C. Mather; E. S. Cheng; R.E. Eplee, Jr.; R. B. Isaacman; S. S. Meyer; R. A. Shafer; R. Weiss; E. L. Wright; C. L. Bennett; N. W. Boggess; E. Dwek; S. Gulkis; M. G. Hauser; M. Janssen; T. Kelsall; P. M. Lubin; S. H. Moseley, Jr.; T. L. Murdock; R. F. Silverberg; G. F. Smoot; D. T. Wilkinson (1990). "A Preliminary Measurement of the Cosmic Microwave Background Spectrum by the Cosmic Background Explorer (COBE) Satellite". The Astrophysical Journal. 354: L37–40. Bibcode:1990ApJ...354L..37M. doi:10.1086/185717.
Mather, J. C.; Fixsen, D. J.; Shafer, R. A.; Mosier, C.; Wilkinson, D. T. (20 February 1999). "Calibrator Design for the Far-Infrared Absolute Spectrophotometer (FIRAS)". The Astrophysical Journal. 512 (2): 511–520.arXiv:astro-ph/9810373. Bibcode:1999ApJ...512..511M. doi:10.1086/306805. S2CID 7394323.

Reported results from the COBE satellite, which was developed by NASA's Goddard Space Flight Center to measure the diffuse infrared and microwave radiation from the early universe to the limits set by our astrophysical environment. Measurements by a Far Infrared Absolute Spectrophotometer (FIRAS) confirmed that the cosmic microwave background (CMB) spectrum is that of a nearly perfect black body with a temperature of 2.725 ± 0.002 K. This observation matches the predictions of the hot Big Bang theory extraordinarily well, and indicates that nearly all of the radiant energy of the Universe was released within the first year after the Big Bang. The first paper presents initial results; the second, final results.

G. F. Smoot; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". The Astrophysical Journal. 396: L1–5. Bibcode:1992ApJ...396L...1S. doi:10.1086/186504.
Bennett, C. L.; Banday, A. J.; Górski, K. M.; Hinshaw, G.; Jackson, P.; Keegstra, P.; Kogut, A.; Smoot, G. F.; Wilkinson, D. T.; Wright, E. L. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". The Astrophysical Journal. 464 (1): L1–L4.arXiv:astro-ph/9601067. Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID 18144842.

Presents results from the Differential Microwave Radiometer (DMR) on the COBE satellite. This maps the cosmic radiation and searches for variations in brightness. The CMB was found to have intrinsic "anisotropy" for the first time, at a level of a part in 100,000. These tiny variations in the intensity of the CMB over the sky show how matter and energy was distributed when the Universe was still very young. Later, through a process still poorly understood, the early structures seen by DMR developed into galaxies, galaxy clusters, and the large scale structure that we see in the Universe today. The first paper presents initial results; the second, final results.

Hauser; et al. (1998). "The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections". The Astrophysical Journal. 508 (1): 25–43.arXiv:astro-ph/9806167. Bibcode:1998ApJ...508...25H. doi:10.1086/306379. S2CID 17415989.

Presents results from the Diffuse Infrared Background Experiment (DIRBE) on the COBE satellite. This searches for the cosmic infrared background radiation produced by the first galaxies. Infrared absolute sky brightness maps in the wavelength range 1.25 to 240 micrometres were obtained to carry out a search for the cosmic infrared background (CIB). The CIB was originally detected in the two longest DIRBE wavelength bands, 140 and 240 micrometres, and in the short-wavelength end of the FIRAS spectrum. Subsequent analyses have yielded detections of the CIB in the near-infrared DIRBE sky maps. The CIB represents a "core sample" of the Universe; it contains the cumulative emissions of stars and galaxies dating back to the epoch when these objects first began to form.

Atomic and molecular physics
Main articles: Atomic physics; Molecular physics; and Atomic, molecular, and optical physics
See also: Timeline of atomic and subatomic physics

Van der Waals, Johannes Diderik (1873). Over de Continuiteit van den Gas- en Vloeistoftoestand [On the continuity of the gas and liquid state] (PDF) (in Dutch). Leiden: A.W. Sijthoff. ISBN 978-0-486-49593-4.

James Clerk Maxwell reviewed this work in Nature and concluded that "there can be no doubt that the name of Van der Waals will soon be among the foremost in molecular science." Johannes Diderik van der Waals received the Nobel Prize in 1910 for his work on the equation of state for gases and liquids.

Röntgen, W.C. (28 December 1895). "Über eine neue Art von Strahlen" [On A New Kind Of Rays]. Sitzungsberichte der Würzburger Physik-medic. Gesellschaft (in German). 22 (3): 153–157. doi:10.3322/canjclin.22.3.153. PMID 4625566. S2CID 71576877. Archived from the original on 5 November 2010. Retrieved 24 Aug 2013.

Discovery of X-rays, leading to the very first Nobel Prize in Physics for the author.

Thomson, J.J. (1897). "Cathode rays". Philosophical Magazine. 44 (269): 293–316. doi:10.1080/14786449708621070.

The classic experimental measurement of the mass and charge of cathode ray "corpuscles", later called electrons. Won the Nobel Physics Prize (in 1906) for this discovery.

Zeeman (1897) papers
Zeeman, P. (1897). "On the influence of Magnetism on the Nature of the Light emitted by a Substance". Phil. Mag. 43 (262): 226–239. doi:10.1080/14786449708620985.
Zeeman, P. (1897). "Doubles and triplets in the spectrum produced by external magnetic forces". Phil. Mag. 44 (266): 55–60. doi:10.1080/14786449708621028.
Zeeman, P. (11 February 1897). "The Effect of Magnetisation on the Nature of Light Emitted by a Substance". Nature. 55 (1424): 347. Bibcode:1897Natur..55..347Z. doi:10.1038/055347a0.

Described the famous effect of splitting of spectral lines in magnetic fields; earned author a Nobel Physics prize citation (1902).

Planck, Max (1901).

See quantum mechanics section.

Einstein, Albert (1905).

See quantum mechanics section.

Bohr, Niels (1913-4).

See quantum mechanics section.

H. G. J. Moseley; M. A. (1913). "The High Frequency Spectra of the Elements". Phil. Mag. 26 (156): 1024–1034. doi:10.1080/14786441308635052. Archived from the original on 2013-07-10. Retrieved 2013-08-24.

This announced a law that gave decisive evidence for atomic number from studies of X-ray spectra, which could be explained by the Bohr model.

Stark, J. (1914). "Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien I. Quereffekt" [Observations of the effect of the electric field on spectral lines I. Transverse effect]. Annalen der Physik (in German). 43 (7): 965–983. Bibcode:1914AnP...348..965S. doi:10.1002/andp.19143480702. Published earlier (1913) in Sitzungsberichten der Kgl. Preuss. Akad. d. Wiss.

Described the famous effect of splitting of spectral lines in electric fields (c.f. Zeeman effect) as predicted by Voigt.[6] Observed the same year (1913) as Lo Surdo;[7] the work won a Nobel Physics prize for Stark.

Einstein, A. (1916). "Strahlungs-Emission und -Absorption nach der Quantentheorie" [Radiation Emission and Absorption according to the Quantum theory]. Verhandlungen der Deutschen Physikalischen Gesellschaft (in German). 18: 318–323. Bibcode:1916DPhyG..18..318E.
—— (1916). "Zur Quantentheorie der Strahlung" [On the Quantum Theory of Radiation]. Mitteilungen der Physikalischen Gessellschaft Zürich (in German). 18: 47–62.
—— (1917). "Zur Quantentheorie der Strahlung" [On the Quantum Theory of Radiation]. Physikalische Zeitschrift (in German). 18: 121–128. Bibcode:1917PhyZ...18..121E.
Translated in ter Haar, D. (1967). The Old Quantum Theory. Pergamon. pp. 167–183. LCCN 66029628. Also in Boorse, H.A., Motz, L. (1966). The world of the atom, edited with commentaries, Basic Books, Inc., New York, pp. 888–901.

Formulated the concepts of spontaneous and stimulated emission.

Arnold Sommerfeld (1919).

See quantum mechanics section.

Auger, P.V. (1923). "Sur les rayons β secondaires produits dans un gaz par des rayons X" [On the secondary β-rays produced in a gas by X-rays]. C. R. Acad. Sci. 177: 169–171.

Description on an atomic ionization effect first discovered by Meitner,[8] but named for the later discoverer, Auger.

de Broglie, Louis (1924).

See quantum mechanics section.

Matrix mechanics papers: W. Heisenberg (1925), M. Born and P. Jordan (1925), M. Born, W. Heisenberg, and P. Jordan (1926).

See quantum mechanics section.

Schroedinger, E (1926).

See quantum mechanics section.

Raman, C. V. (1928). "A new radiation". Indian J. Phys. 2: 387–398. hdl:10821/377.

Relates the experimental discovery of the inelastic scattering of light (predicted theoretically by A. Smekal in 1923[9]) in liquids (with K. S. Krishnan), for which Raman receives the Nobel Prize in Physics in 1930.[10] Observed independently soon after (in crystals) by G. Landsberg and L. I. Mandelstam.[11]

Herzberg, Gerhard (1939) Molecular Spectra and Molecular Structure I. Diatomic Molecules
Herzberg, Gerhard (1945) Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules
Herzberg, Gerhard (1966) Molecular Spectra and Molecular Structure III. Electronic Spectra of Polyatomic Molecules

This three-volume series is the classic detailed presentation of molecular spectroscopy for physicists and chemists. Herzberg received the 1971 Nobel Prize in Chemistry for his spectroscopic research on the electronic structure and geometry of molecules.

Classical mechanics
See also: Classical mechanics and History of classical mechanics

Classical mechanics is the system of physics begun by Isaac Newton and his contemporaries. It is concerned with the motion of macroscopic objects at speeds well below the speed of light.[12]

Galilei, Galileo (1638). Discorsi e dimostrazioni matematiche, intorno à due nuove scienze attenenti alla mecanica & i movimenti locali [Two New Sciences] (in Latin). Leiden: Louis Elsevier.

Classic (first and original[13]) English translation: — (1914). Mathematical discourses and demonstrations, relating to Two New Sciences. Translation by Henry Crew and Alfonso de Salvio.
Recent English translation: — (1974). Two New sciences, including Centers of gravity & Force of percussion. Translated and compiled by Stillman Drake. Madison: Wisconsin University Press. ISBN 978-0-299-06404-4.

Descartes, René (1983) [1644, with additional material from the French translation of 1647]. Principia philosophiae [Principles of Philosophy] (in Latin). Translation with explanatory notes by Valentine Rodger Miller and Reese P. Miller (Reprint ed.). Dordrecht: Reidel. ISBN 978-90-277-1451-0.
Newton, Isaac (1687). Philosophiae Naturalis Principia Mathematica [Mathematical principles of natural philosophy] (in Latin).

A three-volume work, often called Principia or Principia Mathematica. One of the most influential scientific books ever published, it contains the statement of Newton's laws of motion forming the foundation of classical mechanics as well as his law of universal gravitation. He derives Kepler's laws for the motion of the planets (which were first obtained empirically).

Lagrange, Joseph Louis (1788). Mécanique Analytique [Analytical mechanics] (in French).

Lagrange's masterpiece on mechanics and hydrodynamics. Based largely on the calculus of variations, this work introduced Lagrangian mechanics including the notion of virtual work, generalized coordinates, and the Lagrangian. Lagrange also further developed the principle of least action and introduced the Lagrangian reference frame for fluid flow.

Hamilton's papers.
Hamilton, William Rowan (1835). "On the Application to Dynamics of a General Mathematical Method previously applied to Optics" (PDF). British Association Report 1834, Published 1835: 513–518. Retrieved 14 Dec 2012.
— (1835). "On a General Method in Dynamics; by which the Study of the Motions of all free Systems of attracting or repelling Points is reduced to the Search and Differentiation of one central Relation, or characteristic Function" (PDF). Philosophical Transactions of the Royal Society. 124: 247–308. doi:10.1098/rstl.1834.0017. S2CID 120206996. Retrieved 14 Dec 2012.
— (1835). "Second Essay on a General Method in Dynamics" (PDF). Philosophical Transactions of the Royal Society. 125: 95–144. doi:10.1098/rstl.1835.0009. S2CID 186208922. Retrieved 14 Dec 2012.

These three papers used Hamilton's methods in optics to formulate mechanics anew; now called Hamiltonian mechanics.

Noether, Emmy (1918).

See mathematical physics section.

Kolmogorov-Arnol'd-Moser papers.
Kolmogorov, A. N. "On Conservation of Conditionally Periodic Motions for a Small Change in Hamilton's Function." Dokl. Akad. Nauk SSSR 98, 527–530, 1954.
Moser, J. "On Invariant Curves of Area-Preserving Mappings of an Annulus." Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1-20, 1962.
Arnol'd, V. I. "Proof of a Theorem of A. N. Kolmogorov on the Preservation of Conditionally Periodic Motions under a Small Perturbation of the Hamiltonian." Uspekhi Mat. Nauk 18, 13–40, 1963.

Set of important results in dynamical systems theory of Hamiltonian systems, named the KAM theorem after the authors' initials. Regarded in retrospect as a sign of chaos theory.

Goldstein, Herbert. Classical Mechanics.

A standard graduate textbook on classical mechanics, considered a good book on the subject.

Fluid dynamics
See also: Fluid dynamics and History of fluid mechanics

Archimedes (ca. 250 BCE). "On Floating Bodies" (in ancient Greek, later tr. medieval Latin). Syracuse, Sicily. Partial preservation.

Two-book treatise regarded as the founding text of fluid mechanics and hydrostatics in particular. Contains an introduction of his famous principle.[14]

Daniel Bernoulli (1738). Hydrodynamica, sive de viribus et motibus fluidorum commentarii (in Latin). Strasbourg. English translation: Hydrodynamics and Hydraulics by Daniel Bernoulli and Johann Bernoulli (Dover Publications, 1968).

Established a unified approach to hydrostatics and hydraulics; study of efflux; Bernoulli's Principle.

Jean le Rond D'Alembert (1752). Essai d'une nouvelle théorie de la résistance des fluides (in French) [Essay of a new theory of resistance of fluids]. Paris.

Introduces D'Alembert's Paradox.

Euler, Leonhard (1757). "Principes généraux du mouvement des fluides" [General principles of fluid motion]. Mémoires de l'Académie des Sciences de Berlin. 11: 274–315. (Presented in 1755)

Formulates the theory of fluid dynamics in terms of a set of partial differential equations: Euler equations (fluid dynamics)

Navier, Claude Louis (1827). "Mémoire sur les lois du mouvement des fluides". Mémoires de l'Académie des Sciences de l'Institut de France. 6: 389–440. (Presented in 1822)

First formulation of the Navier–Stokes equations, albeit based on an incorrect molecular theory.

Stokes, George Gabriel (1849). "On the theory of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids". Transactions of the Cambridge Philosophical Society. 8: 287. (Presented in 1845)

Correct formulation of the Navier–Stokes equations.

von Helmholtz, Hermann (1858). "Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen". Journal für die Reine und Angewandte Mathematik. 1858 (55): 25–55. doi:10.1515/crll.1858.55.25. S2CID 123183736.

Introduced the study of vortex dynamics (see Vorticity).

Reynolds, Osbourne (1883). "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels". Philosophical Transactions. 174: 935–982. Bibcode:1883RSPT..174..935R. doi:10.1098/rstl.1883.0029.

Introduces the dimensionless Reynolds number, investigating the critical Reynolds number for transition from laminar to turbulent flow.

Prandtl, Ludwig (1905). "Über Flüssigkeitsbewegung bei sehr kleiner Reibung". Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904: 484–491. (Presented in 1904)

Introduces the Boundary layer.

Kolmogorov, Andrey Nikolaevich (1941). Локальная структура турбулентности в несжимаемой жидкости при очень больших числах Рейнольдса. Doklady Akademii Nauk SSSR (in Russian). 30: 299–303.. Translated into English by Kolmogorov, Andrey Nikolaevich (July 8, 1991). "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers". Proceedings of the Royal Society A. 434 (1991): 9–13. Bibcode:1991RSPSA.434....9K. doi:10.1098/rspa.1991.0075. S2CID 123612939.

Introduces a quantitative theory of turbulence.

Computational physics

S. Ulam, R. D. Richtmyer, and J. von Neumann (1947). "Statistical methods in neutron diffusion"; LANL Scientific Laboratory report LAMS–551. Retrieved 2011-10-23.

This paper records the first use of the Monte Carlo method, created at Los Alamos.

Metropolis, N.; et al. (1953)

See statistical mechanics and thermodynamics section .

Fermi, E.; Pasta, J.; Ulam, S. (1955) : "Studies of Nonlinear Problems" (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940.

The Fermi-Ulam-Pasta-Tsingou simulation was an important early demonstration of the ability of computers to deal with nonlinear (physics) problems and its surprising result regarding thermal equipartition hinted towards chaos theory.

Molecular dynamics.
Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
A. Rahman (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A411. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.

Car-Parrinello ab-initio molecular dynamics.
R. Car; M. Parrinello (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
T. D. Kühne; M. Krack; F. R. Mohamed; M. Parrinello (2007). "Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics". Physical Review Letters. 98 (6): 066401.arXiv:cond-mat/0610552. Bibcode:2007PhRvL..98f6401K. doi:10.1103/PhysRevLett.98.066401. PMID 17358962. S2CID 8088072.

Condensed matter physics
See also: Condensed matter physics

Condensed matter physics deals with the physical properties of condensed phases of matter. These properties appear when atoms interact strongly and adhere to each other or are otherwise concentrated.

Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures." Comm. Phys. Lab. Univ. Leiden; No. 120b, 1911.
Kamerlingh Onnes, H., "Further experiments with liquid helium. D. On the change of electric resistance of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury." Comm. Phys. Lab. Univ. Leiden; No. 122b, 1911.
Kamerlingh Onnes, H., "Further experiments with liquid helium. G. On the electrical resistance of pure metals, etc. VI. On the sudden change in the rate at which the resistance of mercury disappears." Comm. Phys. Lab. Univ. Leiden; No. 124c, 1911.

Series of articles about superconductivity.

Sommerfeld, Arnold; Bethe, Hans (1933). Elektronentheorie der Metalle. Berlin Heidelberg: Springer Verlag. ISBN 978-3642950025.
J. Bardeen, L. N. Cooper, and J. R. Schrieffer papers
Cooper, L. N. (1956). "Bound Electron Pairs in a Degenerate Fermi Gas". Physical Review. 104 (4): 1189–1190. Bibcode:1956PhRv..104.1189C. doi:10.1103/PhysRev.104.1189.
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (1957). "Microscopic Theory of Superconductivity". Physical Review. 106 (1): 162–164. Bibcode:1957PhRv..106..162B. doi:10.1103/PhysRev.106.162.
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (1957). "Theory of Superconductivity". Physical Review. 108 (5): 1175–1204. Bibcode:1957PhRv..108.1175B. doi:10.1103/PhysRev.108.1175.

These three papers develop the BCS theory of usual (not high TC) superconductivity, relating the interaction of electrons and the phonons of a lattice. The authors were awarded the Nobel prize for this work.

Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics. Brooks Cole. ISBN 978-0-03-083993-1.

Polymer physics
See also: Polymer physics

Guth, Eugen; Hermann, Mark (1934). "Zur innermolekularen, Statistik, insbesondere bei Kettenmolekiilen I" [For the intra-molecular, statistics, especially for chain molecules I]. Monatshefte für Chemie (in German). 65 (1): 93–121. doi:10.1007/BF01522052. S2CID 96474606.

Contains the foundation of the kinetic theory of rubber elasticity, including the first theoretical description of statistical mechanics of polymers with application to viscosity and rubber elasticity, and an expression for the entropy gain during the coiling of linear flexible molecules.

Guth, Eugene; James, Hubert M. (1941). "Elastic and Thermoelastic Properties of Rubber like Materials". Industrial & Engineering Chemistry. 33 (5): 624–629. doi:10.1021/ie50377a017.

Presented earlier by Guth at the American Chemical Society meeting of 1939, this article contains the first outline of the network theory of rubber elasticity. The resulting Guth-James equation of state is analogous to van der Waal's equation.

James, Hubert M.; Guth, Eugene (1943). "Theory of the Elastic Properties of Rubber". The Journal of Chemical Physics. 11 (10): 455. Bibcode:1943JChPh..11..455J. doi:10.1063/1.1723785.

Presents a more detailed version of the network theory of rubber elasticity. The paper used average forces to some extent instead of thermodynamical functions. In statistical thermodynamics, these two procedures are equivalent. After some controversy within the literature, the James-Guth network theory is now generally accepted for larger extensions. See, e.g., Paul Flory's comments in Proc. Royal Soc. A. 351, 351 (1976).

Flory, Paul J. (1992). Principles of polymer chemistry (15. pr. ed.). Ithaca: Cornell Univ. Press. ISBN 978-0-8014-0134-3.
Flory, Paul J. (1969). Statistical mechanics of chain molecules. New York: Interscience Publishers. ISBN 978-0-470-26495-9.

Reissued: Flory, Paul J.; J. G. Jackson; C. J. Wood (1989). Statistical mechanics of chain molecules (Repr. corr. ed.). Hanser Gardner. ISBN 978-1-56990-019-2.

Gennes, Pierre-Gilles de (1996). Scaling concepts in polymer physics (5. print. ed.). Ithaca, New York: Cornell Univ. Press. ISBN 978-0-8014-1203-5.
Doi, M.; Edwards, S.F. (1988). The theory of polymer dynamics (Reprinted ed.). Oxford: Clarendon Press. ISBN 978-0-19-852033-7.

Electromagnetism
See also: Electromagnetism and History of electromagnetism

William Gilbert (main author), Aaron Dowling, 1600.

See geophysics section.

Coulomb, C. A. (1785–89). Mémoires sur l'Électricité et le Magnétisme (In French; trans. Memoirs on Electricity and Magnetism), a series of seven memoirs.

Contains descriptions empirical investigations into electricity. Established an empirical inverse-square law that would be named for him,[15][16][17][18][19][20][21] by measuring the twist in a torsion balance.[22] Cavendish would use a similar method to estimate the value of Newton's constant G.[23]

Biot; Savart (1820). "Note sur le magnétisme de la pile de Volta" [Note on magnetism of the Volta pile]. Annales de chimie et de physique (in French).

Introduced the Biot–Savart law, the magnetostatic analogue of Coulomb's law.

Ampère, André-Marie (1826). "Théorie mathématique des phénomènes électro-dynamiques: uniquement déduite de l'expérience" [Memoir on the Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience] (in French). Méquignon-Marvis. Online links at Google eBooks (accessed 2010-09-26), and archived from the original at the Internet Archive.

Introduced the famous eponymous law for electric current.

Ohm, GS (1827). "Die galvanische Kette, mathematisch bearbeitet [tr., The Galvanic Circuit Investigated Mathematically]" (in German). TH Riemann, Berlin.

Announced the now-famous circuital relation between voltage and current.

Green, George (1828). "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism", Nottingham.[24]

Essay conceived several key ideas, among them a theorem similar to the modern Green's theorem, the idea of potential functions, and the concept of what are now called Green's functions. This (initially obscure) work directly influenced the work of James Clerk Maxwell and William Thomson, among others.

Faraday, Michael (1839–1855). Experimental researches in electricity (Reprinted 2000 from the 1st ed. 1839 (vol. 1), 1844 (vol. 2), 1855 (vol. 3) ed.). Santa Fe (N.M.): Green Lion Press. ISBN 978-1-888009-15-6.

Faraday's law of induction and research in electromagnetism.[25]

Maxwell, James Clerk (1861). "On Physical Lines of Force". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 21 (4): 161–175, 281–291, 338–348. doi:10.1080/14786446108643033.
Maxwell, James Clerk (1865). Torrance, Thomas F. (ed.). A Dynamical Theory of the Electromagnetic Field. 1982 reprint, with an appreciation by Albert Einstein. Eugene, Oregon: Wipf and Stock. ISBN 978-1-57910-015-5.

The third of James Clerk Maxwell's papers concerned with electromagnetism. The concept of displacement current was introduced, so that it became possible to derive equations of electromagnetic wave. It was the first paper in which Maxwell's equations appeared.

Hall, E.H. (1879). "On a New Action of the Magnet on Electric Currents". American Journal of Mathematics vol 2, p. 287-292. Thesis (PhD), Johns Hopkins U.

Details an experimental analysis of voltaic effect later named for author.

Jackson, J. D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 978-0-471-30932-1.

The defining graduate-level introductory text. (First edition 1962)

Griffiths, David J. (1981). Introduction to electrodynamics (1st ed.). Englewood Cliffs, N.J.: Prentice-Hall. ISBN 978-0-13-481374-5.

A standard undergraduate introductory text.

General physics

Lev Landau, Evgeny Lifshitz (1st Russ. ed. 1940, 1st Eng. ed 1960). Course of Theoretical Physics.

Important ten-volume textbook in theoretical physics methods.

Richard Feynman, Robert B. Leighton and Matthew Sands (1964). Feynman Lectures on Physics. Addison–Wesley.

Bestselling three-volume textbook covering the span of physics. Reference for both (under)graduate student and professional researcher alike.

Mathematical physics
See also: Mathematical physics

Edwin Bidwell Wilson, 1901. "Vector Analysis: A text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs Ph.D. LL.D." Free online copy. (Accessed 7 Dec 2012.)

Introduced the modern day notation of vector calculus, based on Gibbs' system.

Minkowski relativity papers (1907–15):

See special relativity section.

Silberstein, Ludwik (1914)

See special relativity section.

Noether, Emmy (1918). "Invariante Variationsprobleme" [Invariant Variation Problems]. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse (in German). 1918: 235–257. Reprinted in: Noether, Emmy (1971). "Invariant variation problems". Transport Theory and Statistical Physics. 1 (3): 186–207.arXiv:physics/0503066. Bibcode:1971TTSP....1..186N. doi:10.1080/00411457108231446. S2CID 119019843.

Contains a proof of Noether's Theorem (expressed as two theorems), showing that any symmetry of the Lagrangian corresponds to a conserved quantity. This result had a profound influence on 20th century theoretical physics.

Eddington, Arthur (1923)

See general relativity section.

Ising, Ernst (1924). "Beitrag zur Theorie des Ferro-und Paramagnetismus" [Contribution to the theory of ferro- and paramagnetism]. Thesis, Hamburg (in German).
Ising, Ernst (1925). "Beitrag zur Theorie des Ferromagnetismus" [Contribution to the theory of ferromagnetism]. Zeitschrift für Physik (in German). 31 (1): 253–258. Bibcode:1925ZPhy...31..253I. doi:10.1007/BF02980577. S2CID 122157319.

Ising's 1924 thesis proving the non-existence of phase transitions in the 1-dimensional Ising model.

David Hilbert; Richard Courant. Methoden der mathematischen Physik [Methods of Mathematical Physics] (in German)., 2 vol.
Courant, R.; Hilbert, D. (1989). Volume I. WILEY-VCH Verlag GmbH & Co. KGaA; Paperback/eBook. p. 575. doi:10.1002/9783527617210. ISBN 9783527617210. 1st German edition 1924;[26] current English edition April 1989,[26] Print ISBN 978-0-471-50447-4; online ISBN 978-0-471-50447-4.
Courant, R; Hilbert, D, eds. (1989). Volume II, Differential Equations. WILEY-VCH Verlag GmbH & Co. KGaA; Paperback/eBook. p. 852. CiteSeerX 10.1.1.28.936. doi:10.1002/9783527617234. ISBN 9783527617234. 1st German edition 1937;[27] current English edition: April 1989,.[27] Print ISBN 978-0-471-50439-9, online ISBN 9783527617234.

Influential textbooks by two leading mathematicians of the early 20th century.

Weyl, H.K.H. (1929). Elektron und Gravitation. I. (in German) Z. Phys. (56), 330.

The establishment of gauge theory as an important mathematical tool in field theories, an idea first advanced (unsuccessfully) in 1918 by the same author.[28]

von Neumann, John (1932).

See quantum mechanics section.

Peierls, R.; Born, M. (1936). "On Ising's Model of Ferromagnetism". Proc. Camb. Phil. Soc. 32 (3): 477–481. Bibcode:1936PCPS...32..477P. doi:10.1017/S0305004100019174.

Rudolf Peierls' 1936 contour argument proving the existence of phase transitions in higher dimensional Ising models.

PAM Dirac (1939). "A new notation for quantum mechanics". Mathematical Proceedings of the Cambridge Philosophical Society. 35 (3): 416–418. Bibcode:1939PCPS...35..416D. doi:10.1017/S0305004100021162.

Introduced Dirac notation as a standard notation for describing denote abstract vector spaces and linear functionals in quantum mechanics and mathematics, though the notation has precursors in Grassmann nearly 100 years previously.[29]

Morse, Philip M.; Feshbach, Herman (1953). Methods of theoretical physics. New York: McGraw-Hill. ISBN 978-0-07-043316-8.
C. N. Yang, R. Mills (1954)

See quantum field theory section.

Menzel, Donald H. (1961). Mathematical physics (Unabridged and corrected republication of the 2nd ed.). New York: Dover. ISBN 978-0-486-60056-7.

Thorough introduction to the mathematical methods of classical mechanics, electromagnetic theory, quantum theory and general relativity. Possibly more accessible than Morse and Feshbach.

Fröhlich, J.; Simon, B.; Spencer, T. (1 February 1976). "Infrared bounds, phase transitions and continuous symmetry breaking". Communications in Mathematical Physics. 50 (1): 79–95. Bibcode:1976CMaPh..50...79F. CiteSeerX 10.1.1.211.1865. doi:10.1007/BF01608557. S2CID 16501561.

Proved the existence of phase transitions of continuous symmetry models in at least 3 dimensions.

Pre-Modern (Classical) mathematical physics
See also: Classical physics and Modern physics

Galilei, Galileo (1638)

See classical mechanics section.

Newton, Isaac (1687)

See classical mechanics section.

Lagrangia, Giuseppe Ludovico (1788)

See classical mechanics section.

Fourier, J-B.J (1807). Mémoire sur la propagation de la chaleur dans les corps solides [Memoir on the propagation of heat in solid bodies] (in French).

Considered a founding text in the field of Fourier analysis (and by extension harmonic analysis), and a breakthrough for the solution of the classic (partial) differential equations of mathematical physics.

Hamilton, William Rowan (1828–37)

See optics section.

Fourier, J-B J (1822). Théorie analytique de la chaleur (in French). Paris: Firmin Didot Père et Fils. OCLC 2688081. English translation by Freeman (1878),[30] with editorial 'corrections'.[31] Revised French edition, Darboux (ed.) (1888), with many editorial corrections.[31]

Contains a discussion of Fourier(1807) and annunciation of Fourier's law.[32]

Green, George (1828).

See electromagnetism section.

Hamilton, William Rowan (1834–1835)

See classical mechanics section.

Clerk Maxwell, James (1861,1865)

See electromagnetism section.

Nonlinear dynamics and chaos
See also: Chaos theory

Kolmogorov-Arnol'd-Moser papers.

See classical mechanics section.

Fermi, E.; Pasta, J.; Ulam, S. (1955)

See computational physics section.

Lorenz, Edward N. (1963). <0130:DNF>2.0.CO;2 "Deterministic Nonperiodic Flow". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. ISSN 1520-0469.

A finite system of deterministic nonlinear ordinary differential equations is introduced to represent forced dissipative hydrodynamic flow, simulating simple phenomena in the real atmosphere. All of the solutions are found to be unstable, and most of them nonperiodic, thus forcing to reevaluate the feasibility of long-term weather prediction. In this paper the Lorenz attractor is presented for the first time, and gave the first hint of what is now known as butterfly effect.

Li, Tien-Yien; Yorke, James A. (1975). "Period Three Implies Chaos". The American Mathematical Monthly. 82 (10): 985–992. Bibcode:1975AmMM...82..985L. CiteSeerX 10.1.1.329.5038. doi:10.2307/2318254. JSTOR 2318254.

Optics
See also: Optics and History of optics

Alhacen (1021). Book of Optics.

(Arabic: Kitab al-Manazir, Latin: De Aspectibus) – a seven volume treatise on optics and physics, written by Ibn al-Haytham (Latinized as Alhacen or Alhazen in Europe), and published in 1021.

Hooke, R (1665). "Micrographia: or, Some physiological descriptions of minute bodies made by magnifying glasses" (first ed.). London: J. Martyn and J. Allestry.

The first major publication of the Royal Society. It generated a wide public interest in, and often is considered the creator of, the science of microscopy. Also notable for coining the term "biological cell".

Huygens, Christiaan (1690). Traité de la Lumiere [Treatise on Light].

Huygens attained a remarkably clear understanding of the principles of wave-propagation; and his exposition of the subject marks an epoch in the treatment of Optical problems. Not appreciated until much later due to the mistaken zeal with which formerly everything that conflicted with the cherished ideas of Newton was denounced by his followers.

Huygens, Christiaan (1703). Dioptrica.

This posthumous publication contains the law of refraction (now known as "Snell's law) and was partly based on unpublished observations that Willebrord Snellius made and wrote in 1621.

Newton, Isaac (1704). Opticks or, a Treatise of the reflexions, refractions, inflexions and colours of light. Also two treatises of the species and magnitude of curvilinear figures. London: printed for Sam. Smith. and Benj. Walford. (available online)

A key publication in the history of physics, arguably Newton's second most influential physics publication after Principia. Within he describes his famous experiments regarding colour and light, and ends with a set of queries about the nature of light and matter.

Goethe, Johann Wolfgang von (1970) [1810]. Zur Farbenlehre [(On the) Theory of Colours] (in German). Translated from the German, with notes, by Charles Lock Eastlake ; introduction by Deane B. Judd (Reprint London 1840 ed.). Cambridge, Massachusetts: MIT Press. ISBN 978-0-262-57021-3.

Seminal text (regarded as polemical for its time) that influenced later research on human visual and colour perception,[33] from an author usually remembered for his literary work.

Young, Thomas (1804). "Bakerian Lecture: Experiments and calculations relative to physical optics". Philosophical Transactions of the Royal Society. 94: 1–16. Bibcode:1804RSPT...94....1Y. doi:10.1098/rstl.1804.0001. S2CID 110408369.
Fresnel, Augustin (1819). "Memoir on the Diffraction of Light". The Wave Theory of Light – Memoirs by Huygens, Young and Fresnel. American Book Company. pp. 79–145.
Fresnel, Augustin (1819). "On the Action of Rays of Polarized Light upon Each Other". The Wave Theory of Light – Memoirs by Huygens, Young and Fresnel. American Book Company. pp. 145–156.

Work by Thomas Young and Fresnel provided a comprehensive picture of the propagation of light.

Hamiltonian geometrical optics. Theory of Systems of Rays and three supplements. Reissued in Hamilton, William Rowan (1931). The Mathematical Papers of Sir William Rowan Hamilton, Volume I: Geometrical Optics. Edited for the Royal Irish Academy by A. W. Conway and J. L. Synge. Cambridge University Press. Retrieved 2013-07-13.
Hamilton, W.R. (1828). "Theory of Systems of Rays". Transactions of the Royal Irish Academy. 15: 69–174.
——. "Supplement to an Essay on the Theory of Systems of Rays" (Transactions of the Royal Irish Academy, volume 16, part 1 (1830), pp. 1–61.)
——. "Second Supplement to an Essay on the Theory of Systems of Rays" (Transactions of the Royal Irish Academy, volume 16, part 2 (1831), pp. 93–125.)
——. "Third Supplement to an Essay on the Theory of Systems of Rays" (Transactions of the Royal Irish Academy, volume 17 (1837), pp. 1–144.)

A series of papers recording Hamilton's work in geometric optics.[34] This would later become an inspiration for Hamiltonian mechanics.

Maxwell, James Clerk (1861), (1865).

See electromagnetism section.

Udem, Th.; Reichert, J.; Holzwarth, R.; Hänsch, T. W. (1999). "Accurate measurement of large optical frequency differences with a mode-locked laser" (PDF). Optics Letters. 24 (13): 881–3. Bibcode:1999OptL...24..881U. doi:10.1364/OL.24.000881. PMID 18073883. Archived from the original (PDF) on 2010-08-04.
Reichert, J.; T. W. Hänsch; Udem, Th.; Hänsch, T. W. (1999). "Measuring the frequency of light with mode-locked lasers". Optics Communications. 172 (1–6): 59–68. Bibcode:1999OptCo.172...59R. doi:10.1016/S0030-4018(99)00491-5.
Udem, Th.; Holzwarth, R.; Hänsch, T. W. (2002). "Optical frequency metrology". Nature. 416 (6877): 233–237. Bibcode:2002Natur.416..233U. doi:10.1038/416233a. PMID 11894107. S2CID 4416086.

These three papers introduced the Frequency comb technique. The earlier presented the main idea but last is the one often cited.

Nuclear and particle physics
Nuclear physics
Main article: Nuclear physics

Becquerel, H (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus. 122: 420–421.

Reported the accidental discovery of a new kind of radiation. Awarded the 1903 Nobel Prize in Physics for this work.

Rutherford, E. (2004; first ed. 1904). Radio-activity. Courier Dover Publications, 399 pages. ISBN 048649585X, 9780486495859.
Hess, V. F. (1912). "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten" [About Observations of penetrating Radiation during seven balloon-journeys]. Physikalische Zeitschrift (in German). 13: 1084–1091.

Gives an account of the author's discovery of high energy cosmic radiation. Awarded half of the 1936 Nobel Prize in Physics.

Neutron discovery.
Chadwick, J. (1932). "Possible Existence of a Neutron". Nature. 129 (3252): 312. Bibcode:1932Natur.129Q.312C. doi:10.1038/129312a0. S2CID 4076465.
Chadwick, J. (1932). "The Existence of a Neutron". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 136 (830): 692–708. Bibcode:1932RSPSA.136..692C. doi:10.1098/rspa.1932.0112.
Chadwick, J. (1933). "Bakerian Lecture. The Neutron". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 142 (846): 1–26. Bibcode:1933RSPSA.142....1C. doi:10.1098/rspa.1933.0152.

Chadwick's experiments confirmed the identity of the mysterious particle detected independently by Joliot-Curie & Joliot,[35] and Bothe & Becker[36][37] and predicted by Majorana and others[38] to be a neutral nucleon in 1932, for which Chadwick was awarded the Nobel Prize in Physics in 1935.[39]

E. Fermi (1934), "Trends to a theory of beta radiation", Nuovo Cimento, 11 (1): 1–19, Bibcode:1934NCim...11....1F, doi:10.1007/bf02959820, S2CID 123342095. In Italian.

Introduced a theory of beta decay, which first appeared in 1933.[40] The article was later translated into German,[41] and much later English,[42] having been refused publication in Nature. This was later influential in understanding the weak nuclear force.

Bethe Nuclear Physics papers
Bethe, Hans; R. F. Bacher (1936). "Nuclear Physics. A: Stationary States of Nuclei" (PDF). Reviews of Modern Physics. 8 (2): 82–229. Bibcode:1936RvMP....8...82B. doi:10.1103/RevModPhys.8.82.
Bethe, Hans (1937). "Nuclear Physics. B: Nuclear Dynamics, Theoretical". Reviews of Modern Physics. 9 (2): 69–244. Bibcode:1937RvMP....9...69B. doi:10.1103/RevModPhys.9.69.
Bethe, Hans; M. Stanley Livingston (1937). "Nuclear Physics. C: Nuclear Dynamics, Experimental". Reviews of Modern Physics. 9 (3): 245–390. Bibcode:1937RvMP....9..245L. doi:10.1103/RevModPhys.9.245.

A series of three articles by Hans Bethe summarizing the knowledge in the subject of Nuclear Physics at the time of publication. The set of three articles is colloquially referred to as "Bethe's bible".

C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse, A. D. McGuire; Reines; Harrison; Kruse; McGuire (July 20, 1956). "Detection of the Free Neutrino: a Confirmation". Science. 124 (3212): 103–4. Bibcode:1956Sci...124..103C. doi:10.1126/science.124.3212.103. PMID 17796274.

This contains an account of an experiment first suggested by Wang,[43] confirming the existence of a particle (the neutrino, more precisely the electron neutrino) first predicted by Pauli in 1940;[44][45] a result that was rewarded almost forty years later with the 1995 Nobel Prize for Reines.[46]

Wu et al. (1957)

See particle physics section.

Fowler et al. (1957).

See astrophysics section.

Particle physics
Main article: Particle physics

Thomson, JJ (1897).

See the atomic and molecular physics section.

Hess, V. F. (1912).

See the nuclear physics section.

C.D. Anderson (1932). "The Apparent Existence of Easily Deflectable Positives". Science. 76 (1967): 238–9. Bibcode:1932Sci....76..238A. doi:10.1126/science.76.1967.238. PMID 17731542.

Experimental detection of the positron verifying the prediction from the Dirac equation, for which Anderson won the Nobel Physics prize in 1936. See also: C.D. Anderson (1933). "The Positive Electron". Physical Review. 43 (6): 491–494. Bibcode:1933PhRv...43..491A. doi:10.1103/PhysRev.43.491.

Fermi, E. (1934).

See the nuclear physics section.

J. C. Street and E. C. Stevenson. "New Evidence for the Existence of a Particle Intermediate Between the Proton and Electron", Phys. Rev. 52, 1003 (1937).

Experimental confirmation of a particle first discovered by Anderson and Neddermeyer at Caltech in 1936;[47] originally thought to be Yukawa's meson,[48] but later shown to be a "heavy electron", now called muon.

Cowan et al. (1956)

See the nuclear physics section.

Wu, C. S.; Ambler, E; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. (1957). "Experimental Test of Parity Conservation in Beta Decay". Physical Review. 105 (4): 1413–1415. Bibcode:1957PhRv..105.1413W. doi:10.1103/PhysRev.105.1413.

An important experiment (based on a theoretical analysis by Lee and Yang[49]) that proved that parity conservation was disobeyed by the weak force, later confirmed by another group in the same year.[50] This won Lee and Yang the Nobel Prize in Physics for 1957.

Sakharov, A. D. (1967).

See cosmology section.

Griffiths, David (1987). Introduction to elementary particles (New ed.). New York: Wiley. ISBN 978-0-471-60386-3.

Standard undergraduate particle physics textbook.

Quantum mechanics
Main article: quantum mechanics
See also: Timeline of quantum mechanics and History of quantum mechanics

For relevant publications before 1900, see atomic and molecular physics section.
Planck, Max (1901). "Ueber das Gesetz der Energieverteilung im Normalspectrum" [On the Law of Distribution of Energy in the Normal Spectrum] (PDF). Annalen der Physik (in German). 309 (3): 553–563. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310. Archived from the original (PDF) on 2012-06-10.

— (1901). "On the Law of Distribution of Energy in the Normal Spectrum" (PDF). Annalen der Physik. 4 (3): 553–563. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310.

Introduced Planck's law of black body radiation in an attempt to interpolate between the Rayleigh–Jeans law (which worked at long wavelengths) and Wien's law (which worked at short wavelengths). He found that the above function fit the data for all wavelengths remarkably well. This paper is considered to be the beginning of quantum theory and discovery of photon.

Einstein, Albert (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. Retrieved 2008-02-18.

English translations:

"On a Heuristic Point of View about the Creation and Conversion of Light". Translated by Dirk ter Haar
"On a Heuristic Point of View about the Creation and Conversion of Light. Translated by Wikisource

Introduced the concept of light quanta (called photons today) to explain the photoelectric effect. Cited for Nobel Physics Prize (1921). Part of the Annus Mirabilis papers.

Bohr model papers:
Bohr, Niels (1913). "On the Constitution of Atoms and Molecules, Part I" (PDF). Philosophical Magazine. 26 (151): 1–24. Bibcode:1913PMag...26....1B. doi:10.1080/14786441308634955.
— (1913). "On the Constitution of Atoms and Molecules, Part II Systems Containing Only a Single Nucleus" (PDF). Philosophical Magazine. 26 (153): 476–502. Bibcode:1913PMag...26..476B. doi:10.1080/14786441308634993.
— (1913). "On the Constitution of Atoms and Molecules, Part III Systems containing several nuclei". Philosophical Magazine. 26 (155): 857–875. Bibcode:1913PMag...26..857B. doi:10.1080/14786441308635031.
— (1914). "The spectra of helium and hydrogen". Nature. 92 (2295): 231–232. Bibcode:1913Natur..92..231B. doi:10.1038/092231d0. S2CID 11988018.

Introduced the Bohr model of the (hydrogen) atom, which later formed the foundation for the more sophisticated atomic shell model of larger atoms.

J. Franck & G. Hertz (1914). "Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben". Verh. Dtsch. Phys. Ges. (in German). 16: 457–467.

An experiment on the electrical conductivity of gases that supported the conclusions of the Bohr model.

Arnold Sommerfeld (1919). Atombau und Spektrallinien. Friedrich Vieweg und Sohn, Braunschweig' ISBN 3-87144-484-7.
Arnold Sommerfeld, translated from the third German edition by Henry L. Brose Atomic Structure and Spectral Lines (Methuen, 1923)

Added a relativisitic correction to Bohr's model achieved in 1916, by Sommerfeld. Together with Planck (1901), Einstein (1905) and Bohr model (1913) considered stanchion of old quantum theory.

Gerlach, W.; Stern, O. (1922). "Das magnetische Moment des Silberatoms" [The magnetic moment of silver atoms]. Zeitschrift für Physik (in German). 9 (1): 353–355. Bibcode:1922ZPhy....9..353G. doi:10.1007/BF01326984. S2CID 126109346.

This important experiment on a beam of particles through a magnetic field described the experimental observation that their deflection takes only certain quantized values was important in leading to the concept of a new quantum number, spin.

de Broglie, Louis (1924). Recherches sur la théorie des quanta (in French) (Researches on the theory of quanta), Thesis, Paris. Ann. de Physique (10) 3, 22 (1925)

Introduced formally the concept of the de Broglie wavelength to support hypothesis of wave particle duality.

Matrix mechanics papers:
W. Heisenberg (1925), Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (in German), Zeitschrift für Physik, 33, 879-893 (received July 29, 1925). [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations).]
M. Born and P. Jordan (1925), Zur Quantenmechanik (in German), Zeitschrift für Physik, 34, 858-888 (received September 27, 1925). [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: On Quantum Mechanics).]
M. Born, W. Heisenberg, and P. Jordan (1926), Zur Quantenmechanik II (in German), Zeitschrift für Physik, 35, 557–615, (received November 16, 1925). [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: On Quantum Mechanics II).]

These three papers (die Dreimaennerarbeit) formulated matrix mechanics, the first successful (non-relativistic) theory of quantum mechanics.[51]

Wave mechanics papers.
Schroedinger, E (1926). "Quantisierung als Eigenwertproblem" [German; tr. "Quantization as an Eigenvalue Problem"]. Four communications (Ger Mitteilungen).
Schrödinger, E. (1926). "Quantisierung als Eigenwertproblem. (Erste Mitteilung.)" [Quantization as an Eigenvalue Problem (1st communication.)] (PDF). Ann. Phys. (in German). 79 (4): 361–376. Bibcode:1926AnP...384..361S. doi:10.1002/andp.19263840404. Archived from the original (PDF) on March 23, 2005. Key: citeulike:4768943. Alternate URL, from the original.
"... (Zweite Mitteilung.)" [(2nd communication.)] (PDF). Ann. Phys. (in German). 79. Archived from the original (PDF) on January 28, 2005. pp. 489–527, (1926). Alternate URL, from the original.
"... (Dritte Mitteilung.)" [(3rd communication.)] (PDF). Ann. Phys. (in German). 80. Archived from the original (PDF) on 2012-06-17. pp. 437–490, (1926). from the original.
"... (Vierte Mitteilung.)" [(4th communication.)] (PDF). Ann. Phys. (in German). 81.[dead link] pp. 109–139, (1926). from the original.
----------, E. (1926). "An Undulatory Theory of the Mechanics of Atoms and Molecules". Phys. Rev. 28 (6): 1049–1070. Bibcode:1926PhRv..28..1049S. doi:10.1103/PhysRev.28.1049.

These papers introduce the wave-mechanical description of the atom (Ger Wellenmechanik; not to be confused with classical wave mechanics), inspired by the wave–particle duality hypotheses of Einstein (1905) and de Broglie (1924), among others. This was only the second fully adequate formulation of (non-relativistic) quantum theory. Introduced the now famous equation named after the author.[51]

Heisenberg, W. (1927). "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik" [On the Perceptual Content of Quantum Theoretical Kinematics and Mechanics]. Zeitschrift für Physik (in German). 43 (3–4): 172–198. Bibcode:1927ZPhy...43..172H. doi:10.1007/BF01397280. S2CID 122763326.

Formulates the uncertainty principle as a key concept in quantum mechanics.[51]

Germer, C.J.; Germer, L. (January 1928). "The Diffraction of Electrons by a Crystal of Nickel" (PDF). Bell System Tech. J. 7 (1): 90–105. Bibcode:1927PhRv...30..705D. doi:10.1103/PhysRev.30.705. Retrieved December 5, 2012.

Performed an experiment (with Lester Germer) which observed Bragg X-ray diffraction patterns from slow electrons; later independently replicated by Thomson, for which Davisson and Thomson shared the Nobel Prize in Physics in 1937. This confirmed de Broglie's hypothesis that matter has wave-like behaviour; in combination with the Compton effect discovered by Arthur Compton (who won the Nobel Prize for Physics in 1927), established the wave–particle duality hypothesis as a fundamental concept in quantum theory.

Dirac, P. A. M. (1930). The Principles of Quantum Mechanics.

Quantum mechanics as explained by one of the founders of the field, Paul Dirac. First edition published on 29 May 1930. The second to last chapter is particularly interesting because of its prediction of the positron.

von Neumann, John. (1932). Mathematische Grundlagen der Quantenmechanik (in German).
Mathematical Foundations of Quantum Mechanics, Beyer, R. T., trans., Princeton Univ. Press. 1996 edition: ISBN 0-691-02893-1.

Rigorous axiomatic formulation of quantum mechanics as explained by one of the greatest pure and applied mathematicians in modern history. In this book all the modern mathematical machinery to deal with quantum theories, such as the general notion of Hilbert space, that of self-adjoint operator and a complete general version of the spectral theory for self-adjoint unbounded operators, was introduced for the first time.

Feynman, R P (1942). "The Principle of Least Action in Quantum Mechanics". Ph.D. Dissertation, Princeton University. Reprinted as Laurie M. Brown ed., (with title Feynman's Thesis: a New Approach to Quantum Theory). World Scientific, 2005. ISBN 978-981-256-380-4.

The earliest record of the (complete) path integral formalism, a Lagrangian formulation of quantum mechanics, anticipated by ideas from Dirac,[52] via the Wiener integral.[53]

Quantum field theory
See also: Quantum field theory and History of quantum field theory

Klein and Gordon papers:
Klein, O. (1926). "Quantentheorie und fünfdimensionale Relativitätstheorie". Z. Phys. 37 (12): 895–906. Bibcode:1926ZPhy...37..895K. doi:10.1007/BF01397481.
Gordon, O. (1926). "Der Comptoneffekt nach der Schrödingerschen Theorie". Z. Phys. 40 (1–2): 117–133. Bibcode:1926ZPhy...40..117G. doi:10.1007/bf01390840. S2CID 122254400.

The publications formulate what became known as the Klein–Gordon equation as the first relativistically invariant Schrödinger equation (however the equation was considered contemporaneously by Schrödinger - in his personal notes - and Fock, among others).[54]

Dirac equation:
Dirac, P. A. M. (1928). "The Quantum Theory of the Electron". Proceedings of the Royal Society A. 117 (778): 610–624. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023.
Dirac, P. A. M. (1930). "A Theory of Electrons and Protons". Proceedings of the Royal Society A. 126 (801): 360–365. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013. JSTOR 95359.

In these papers, Dirac formulates and derives the Dirac equation, which won him a Nobel Prize (1933) in Physics.

Feynman, Richard P. (1949). "Space-Time Approach to Quantum Electrodynamics". Physical Review. 76 (6): 769–789. Bibcode:1949PhRv...76..769F. doi:10.1103/PhysRev.76.769.

Introduction of the Feynman diagrams approach to quantum electrodynamics.

Yang, C. N.; Mills, R. (1954). "Conservation of Isotopic Spin and Isotopic Gauge Invariance". Physical Review. 96 (1): 191–195. Bibcode:1954PhRv...96..191Y. doi:10.1103/PhysRev.96.191.

Extended the concept of gauge theory for abelian groups, e.g. quantum electrodynamics, to nonabelian groups to provide an explanation for strong interactions by use of what are now known as the Yang–Mills equations.

Electroweak unification papers:
S.L. Glashow (1961). "Partial-symmetries of weak interactions". Nuclear Physics. 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
S. Weinberg (1967). "A Model of Leptons". Physical Review Letters. 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
A. Salam (1968). "Weak and Electromagnetic Interactions". In N. Svartholm (ed.). Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium at Lerum, Sweden. Conf. Proc. C680519 (1968). Stockholm: Almquvist and Wiksell. pp. 367–77.

Combined the electromagnetic and weak interactions (through the use of the Higgs mechanism) into an electro-weak theory, and won the trio the Nobel Physics Prize (1979). Also seen as a step towards the Standard Model of particle physics.

Higgs et al. 1964 papers:
F. Englert, R. Brout; Brout (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons". Physical Review Letters. 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
P.W. Higgs (1964). "Broken Symmetries and the Masses of Gauge Bosons". Physical Review Letters. 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
G.S. Guralnik; Hagen; Kibble (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters. 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.

Collectively these three papers (called the 1964 PRL symmetry breaking papers) formulated the concept of the Higgs mechanism. Also important later work done by t'Hooft.

Gross, Wilczek & Politzer 1973 papers:

D.J. Gross, F. Wilczek; Wilczek (1973). "Ultraviolet behavior of non-abelian gauge theories". Physical Review Letters. 30 (26): 1343–1346. Bibcode:1973PhRvL..30.1343G. doi:10.1103/PhysRevLett.30.1343.
H.D. Politzer (1973). "Reliable perturbative results for strong interactions". Physical Review Letters. 30 (26): 1346–1349. Bibcode:1973PhRvL..30.1346P. doi:10.1103/PhysRevLett.30.1346.

Won the three researchers the Nobel Physics (2004) prize for the prediction of asymptotic freedom.

Peskin, Michael E.; Schroeder, Daniel V. (1995). An Introduction to Quantum Field Theory. Addison-Wesley Advanced Book Program. ISBN 978-0-201-50397-5.

Standard graduate textbook in quantum field theory.

Relativity
Special
See also: Special theory of relativity and History of special relativity

The primary sources section of the latter article in particular contains many additional (early) publications of importance in the field.

Lorentz, Hendrik (1892). "De relatieve beweging van de aarde en den aether". Zittingsverlag Akad. (in Dutch). 5 (1): 74–79.

For a translation see: https://en.wikisource.org/wiki/Translation:The_Relative_Motion_of_the_Earth_and_the_Aether. Hendrik Lorentz was a major influence on Einstein's theory of special relativity. Lorentz laid the fundamentals for the work by Einstein and the theory was originally called the Lorentz-Einstein theory. After 1905 Lorentz wrote several papers on what he called "Einstein's principle of relativity".

Einstein, Albert (1905-06-30). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies]. Annalen der Physik (in German). 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.

"On the Electrodynamics of Moving Bodies". Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923)
"On the Electrodynamics of Moving Bodies". Translation by Megh Nad Saha in The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski, University of Calcutta, 1920, pp. 1–34:

Introduced the special theory of relativity. Reconciled Maxwell's equations for electricity and magnetism with the laws of mechanics by introducing major changes to mechanics close to the speed of light. One of the Annus Mirabilis papers.

Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" (PDF). Annalen der Physik. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. Retrieved 2008-02-18.

English translations:

"Does the Inertia of a Body Depend Upon Its Energy Content?". Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923).

Used the newly formed special relativity to introduce the famous mass energy formula. One of the Annus Mirabilis papers.

Minkowski relativity papers:

Minkowski, Hermann (1915) [1907]. "Das Relativitätsprinzip" [The Relativity Principle]. Annalen der Physik (in German). 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
—— (21 December 1907). "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" . Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111.
English translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies. In: The Principle of Relativity (1920), Calcutta: University Press, 1-69
—— (21 September 1908). "Raum und Zeit" . Physikalische Zeitschrift. 10: 75–88.
Translation by Meghnad Saha, "Space and Time" (1920): Wikisource link.

Introduced the four-vector notation and the notion of Minkowski space, which was later adopted by Einstein and others.

Silberstein, Ludwik (1914). The theory of relativity. Cambridge University Press.

Used concepts developed in the then-current textbooks (e.g., vector analysis and non-Euclidean geometry) to provide entry into mathematical physics with a vector-based introduction to quaternions and a primer on matrix notation for linear transformations of 4-vectors. The ten chapters are composed of 4 on kinematics, 3 on quaternion methods, and 3 on electromagnetism. Silberstein used biquaternions to develop Minkowski space and Lorentz transformations. The second edition published in 1924 extended relativity into gravitation theory with tensor methods, but was superseded by Eddington's text.

Taylor, Edwin F.; Wheeler, John Archibald (1992). Spacetime Physics: Introduction to Special Relativity (2nd ed.). W. H. Freeman. ISBN 978-0-7167-2327-1.

A modern introduction to special relativity, that explains well how the choice to divide spacetime into a time part and a space part is no different than two choices about how to assign coordinates to the surface of the earth.

General
See also: General theory of relativity and History of general relativity

Einstein, Albert (1916). "Die Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity] (PDF). Annalen der Physik (in German). 354 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702. Archived from the original (PDF) on 2006-08-23.[55]

This publication is the first complete account of a general relativistic theory.

Eddington, Arthur Stanley (1923). The Mathematical Theory of Relativity. Cambridge University Press.

Einstein considered this the finest description of the theory of relativity in any language.[56]

J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. p. 58. ISBN 978-0-7167-0344-0..

A book on gravitation, often considered the "Bible" on gravitation by researchers. Published by W.H. Freeman and Company in 1973. It covers all aspects of the General Theory of Relativity and also considers some extensions and experimental confirmation. It is divided into two "tracks", the second of which covers more advanced topics. Its massive size (over 1200 pages) has inspired nicknames such as "the phone book".[57]

Statistical mechanics and thermodynamics
Main articles: Thermodynamics and Statistical mechanics
See also: History of thermodynamics, List of notable textbooks in statistical mechanics, and Literature of phase boundaries

Benjamin Thompson, Count Rumford (1798). "An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction". Philosophical Transactions of the Royal Society. 88: 102. doi:10.1098/rstl.1798.0006.

Observations of the generation of heat during the boring of cannons led Rumford to reject the caloric theory and to contend that heat was a form of motion.

Fourier, J-B J (1822). Théorie analytique de la chaleur (in French). Paris: Firmin Didot Père et Fils. OCLC 2688081. Google eBook. English translation by Freeman (1878),[30] with editorial 'corrections'.[31] Revised French edition, Darboux (ed.) (1888), with many editorial corrections.[31]

A founding text in the field of Fourier analysis, and a breakthrough for the solution of the classic (partial) differential equations of mathematical physics.[32] Contains an annunciation of Fourier's law.

Carnot, Sadi (1824). Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance [Reflections on the Motive Power of Heat and on Machines Fitted to Develop That Power]. Google eBook (in French). Paris: Bachelier. External link in |website= (help)

—; Thurston, Robert Henry (1890). Reflections on the Motive Power of Heat and on Machines Fitted to Develop That Power. New York: J. Wiley & Sons. (full text of 1897 ed.))
—; E. Clapeyron; R. Clausius (2005). Reflections on the Motive Power of Fire – and other Papers on the Second Law of Thermodynamics. Edited with an introduction by E. Mendoza. New York: Dover Publications. ISBN 978-0-486-44641-7.

Helmholtz, Hermann (1882). "Ueber die Thermodynamik der chemischer Vorgänge" [On the thermodynamics of chemical processes]. Sitzungsbericht der Akademi der Wissenschaften zu Berlin (in German).

— (1888). "On the thermodynamics of chemical processes". Physical Memoirs Selected and Translated from Foreign Sources. 1: 43–97.

Gibbs, J. Willard (1875–1878). On the Equilibrium of Heterogeneous Substances. Connecticut Acad. Sci. ISBN 978-0-8493-9685-4. Reprinted in:
— (October 1993). The Scientific Papers of J. Willard Gibbs (Vol. 1). Ox Bow Press. ISBN 978-0-918024-77-0.
— (February 1994). The Scientific Papers of J. Willard Gibbs (Vol. 2). Ox Bow Press. ISBN 978-1-881987-06-2.

Between 1876 and 1878 Gibbs wrote a series of papers collectively entitled "On the Equilibrium of Heterogeneous Substances", considered one of the greatest achievements in physical science in the 19th century and the foundation of the science of physical chemistry. In these papers Gibbs applied thermodynamics to the interpretation of physicochemical phenomena and showed the explanation and interrelationship of what had been known only as isolated, inexplicable facts. Gibbs' papers on heterogeneous equilibria included: some chemical potential concepts; some free energy concepts; a Gibbsian ensemble ideal (basis of the statistical mechanics field); and a phase rule.

Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics. New York: Charles Scribner's Sons.
Einstein, Albert (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" [On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat]. Ann. Phys. (in German). 17 (549): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806. Online PDF copy.

In this publication Einstein covered his study of Brownian motion, and provided empirical evidence for the existence of atoms. Part of the Annus Mirabilis papers.

Ising, Ernst (1924), (1925).

See mathematical physics section.

Peierls, R.; Born, M. (1936).

See mathematical physics section.

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equation of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114. Online article: accessed 3 May 2012.

Introduces the Metropolis Monte Carlo method with periodic boundary conditions and applies it to the numerical simulation of a fluid.

Fermi, E.; Pasta, J.; Ulam, S. (1955)

See computational physics section.

Kadanoff, Leo P. (1966). "Scaling laws for Ising models near Tc". Physics Physique Fizika. 2 (6): 263. doi:10.1103/PhysicsPhysiqueFizika.2.263.

Introduces the real space view on the renormalization group, and explains using this concept some relations between the scaling exponents of the Ising model.

Wilson, Kenneth G. (1974). "The renormalization group: critical phenomena and the Kondo problem". Reviews of Modern Physics 47 (4): 773–840. Bibcode:1975RvMP...47..773W. doi:10.1103/RevModPhys.47.773.

Application of the renormalization group to the solution of the Kondo problem. The author was awarded the Nobel Prize in 1982 for this work.

See also

Outline of physics

References

Physical Sciences, Encyclopædia Britannica: Macropaedia. 1994. p. 831.
"Awards & Medals: Julius Bartels". European Geosciences Union. Archived from the original on 2012-07-28. Retrieved 30 September 2011.
Akasofu, S.-I. (2011). "The Scientific Legacy of Sydney Chapman". EOS. 92 (34): 281–282. Bibcode:2011EOSTr..92..281A. doi:10.1029/2011EO340001.
Voelkel, James R. (2001). The composition of Kepler's Astronomia nova. Princeton: Princeton University Press. p. 1. ISBN 978-0-691-00738-0.
Keeler, James E. (November 1897), "The Importance of Astrophysical Research and the Relation of Astrophysics to the Other Physical Sciences", The Astrophysical Journal, 6 (4): 271–288, Bibcode:1897ApJ.....6..271K, doi:10.1086/140401, PMID 17796068
Voigt, Waldemar (1901). "Ueber das Elektrische Analogon des Zeemaneffectes (On the electric analogue of the Zeeman effect)". Annalen der Physik. 4 (1): 197–208. Bibcode:1901AnP...309..197V. doi:10.1002/andp.19013090112.
Leone, M.; Paoletti, A.; Robotti, N. (2004). "A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo". Physics in Perspective. 6 (3): 271–294. Bibcode:2004PhP.....6..271L. doi:10.1007/s00016-003-0170-2. S2CID 121426797.
L. Meitner (1922). "Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen". Z. Phys. 9 (1): 131–144. Bibcode:1922ZPhy....9..131M. doi:10.1007/BF01326962. S2CID 121637546.
Smekal, A. (1923). "Zur Quantentheorie der Dispersion". Naturwissenschaften. 11 (43): 873–875. Bibcode:1923NW.....11..873S. doi:10.1007/BF01576902. S2CID 20086350.
Singh, R. (2002). "C. V. Raman and the Discovery of the Raman Effect". Physics in Perspective. 4 (4): 399–420. Bibcode:2002PhP.....4..399S. doi:10.1007/s000160200002. S2CID 121785335.
Landsberg, G.; Mandelstam, L. (1928). "Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen". Naturwissenschaften. 16 (28): 557–558. Bibcode:1928NW.....16..557.. doi:10.1007/BF01506807. S2CID 22492141.
Dugas, René (1988). A history of mechanics. Foreword by Louis de Broglie ; translated into English by J.R. Maddox (Dover ed.). New York: Dover Publications. ISBN 978-0-486-65632-8.
"The foundation of mechanics". The Independent. July 6, 1914. Retrieved July 28, 2012.
"Archimedes (Greek mathematician) - Britannica Online Encyclopedia". Britannica.com. Retrieved 2012-08-13.
Coulomb (1785a) "Premier mémoire sur l’électricité et le magnétisme," Histoire de l'Académie Royale des Sciences, pages 569-577.
Coulomb (1785b) "Second mémoire sur l’électricité et le magnétisme," Histoire de l'Académie Royale des Sciences, pages 578-611.
Coulomb (1785c) "Troisième mémoire sur l’électricité et le magnétisme," Histoire de l'Académie Royale des Sciences, pages 612-638.
Coulomb (1786) "Quatrième mémoire sur l’électricité," Histoire de l'Académie Royale des Sciences, pages 67-77.
Coulomb (1787) "Cinquième mémoire sur l’électricité," Histoire de l'Académie Royale des Sciences, pages 421-467.
Coulomb (1788) "Sixième mémoire sur l’électricité," Histoire de l'Académie Royale des Sciences, pages 617-705.
Coulomb (1789) "Septième mémoire sur l’électricité et le magnétisme," Histoire de l'Académie Royale des Sciences, pages 455-505.
Coulomb (1784) "Recherches théoriques et expérimentales sur la force de torsion et sur l'élasticité des fils de metal," (Theoretical research and experimentation on torsion and the elasticity of metal wire) Histoire de l'Académie Royale des Sciences, pages 229-269.
* Cavendish, Henry (1798). "Experiments to Determine the Density of the Earth". In MacKenzie, A. S. (ed.). Scientific Memoirs Vol.9: The Laws of Gravitation. American Book Co. (published 1900). pp. 59–105. Online copy of Cavendish's 1798 paper, and other early measurements of gravitational constant.
This essay can be found in Mathematical papers of the late George Green, edited by N. M. Ferrers. Accessed 7 Dec 2012.
Bragg, Melvyn (2006). 12 books that changed the world. London: Hodder & Stoughton. ISBN 978-0-340-83981-2.
Online product page, accessed 7 Dec 2012.
Online product page, accessed 7 Dec 2012.
H.Weyl, Gravitation und Elektrizität. Sitzungsber. Akademie der Wissenschaften Berlin, 465-480 (1918).
H. Grassmann (1862). Extension Theory. History of Mathematics Sources. American Mathematical Society, London Mathematical Society, 2000 translation by Lloyd C. Kannenberg.
Freeman, A. (1878). The Analytical Theory of Heat, Cambridge University Press, Cambridge UK, cited by Truesdell, C.A. (1980), The Tragicomical History of Thermodynamics, 1822–1854, Springer, New York, ISBN 0-387-90403-4, page 52.
Truesdell, C.A. (1980). The Tragicomical History of Thermodynamics, 1822–1854, Springer, New York, ISBN 0-387-90403-4, page 52.
Fourier, Joseph (1822). Théorie analytique de la chaleur (in French). Paris: Firmin Didot Père et Fils. OCLC 2688081.
Ising, E; Goethe as a Physicist - bibliotheca Augustana. Volume 18 (4) American Association of Physics Teachers – Apr 1, 1950. Accessed 26 Jul 2013.
D.R. Wilkins, Hamilton's Papers on Geometrical Optics. School of Mathematics, Trinity College Dublin. Accessed 13 Jul 2013.
Joliot-Curie, Irène & Joliot, Frédéric (1932). "Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons ? très pénétrants" [Emission of high-speed protons by hydrogenated substances under the influence of very penetrating ?-rays]. Comptes Rendus. 194: 273.
Bothe, W.; Becker, H. (1930). "Künstliche Erregung von Kern-?-Strahlen" [Artificial excitation of nuclear ?-radiation]. Zeitschrift für Physik. 66 (5–6): 289–306. Bibcode:1930ZPhy...66..289B. doi:10.1007/BF01390908. S2CID 122888356.
Becker, H.; Bothe, W. (1932). "Die in Bor und Beryllium erregten ?-Strahlen" [G-rays excited in boron and beryllium]. Zeitschrift für Physik. 76 (7–8): 421–438. Bibcode:1932ZPhy...76..421B. doi:10.1007/BF01336726. S2CID 121188471.
Ambartsumian and Ivanenko (1930) "Об одном следствии теории дирака протонов и электронов" (On a Consequence of the Dirac Theory of Protons and Electrons), Доклады Академии Наук СССР (Doklady Akademii Nauk SSSR / Proceedings of the USSR Academy of Sciences) Ser. A, no. 6, pages 153-155. Available in Russian on-line.
James Chadwick - Biography
"Tentativo di una teoria dei raggi β" (in Italian) [A tentative Theory of β-rays], Ricerca Scientifica, 1933.
Fermi, E (1934). "Versuch einer Theorie der beta-Strahlen. (Search for a Theory of beta-Rays) [German]". Zeitschrift für Physik. 88 (3–4): 161. Bibcode:1934ZPhy...88..161F. doi:10.1007/bf01351864. S2CID 125763380.
Fermi, E. (1934). "Fermi's Theory of Beta Decay (English translation by Fred L. Wilson, 1968)". American Journal of Physics.
K.-C. Wang (1942). "A Suggestion on the Detection of the Neutrino". Physical Review. 61 (1–2): 97. Bibcode:1942PhRv...61...97W. doi:10.1103/PhysRev.61.97.
As written in his famous letter to the Physical Institute of the Federal Institute of Technology, Zürich, on 4 Dec 1940.
L.M. Brown (1978). "The idea of the neutrino". Physics Today. 31 (9): 23–28. Bibcode:1978PhT....31i..23B. doi:10.1063/1.2995181.
"The Nobel Prize in Physics 1995". The Nobel Foundation. Retrieved 29 June 2010.
Oral History interview transcript with Carl D. Anderson 30 June 1966, American Institute of Physics, Niels Bohr Library and Archives
Yukaya Hideka, On the Interaction of Elementary Particles 1, Proceedings of the Physico-Mathematical Society of Japan (3) 17, 48, pp 139–148 (1935). (Read 17 November 1934)
Lee, T. D.; Yang, C. N. (1956). "Question of Parity Conservation in Weak Interactions". Physical Review. 104 (1): 254–258. Bibcode:1956PhRv..104..254L. doi:10.1103/PhysRev.104.254.
Garwin, R. L.; Lederman, L. M.; Weinrich, M. (1957). "Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon". Physical Review. 105 (4): 1415–1417. Bibcode:1957PhRv..105.1415G. doi:10.1103/PhysRev.105.1415.
Papers from the beginning of quantum mechanics. Institute for Theoretical Physics II, University of Erlangen-Nuremberg, Germany. Accessed on 12 Feb 2013.
Dirac, P. A. M. (1933). "The Lagrangian in Quantum Mechanics". Physikalische Zeitschrift der Sowjetunion. 3: 64–72.
Masud Chaichian; Andrei Pavlovich Demichev (2001). "Introduction". Path Integrals in Physics Volume 1: Stochastic Process & Quantum Mechanics. Taylor & Francis. p. 1 ff. ISBN 978-0-7503-0801-4.
Kragh, Helge (1984). "Equation with the many fathers. The Klein–Gordon equation in 1926". American Journal of Physics. 52 (11): 1024. Bibcode:1984AmJPh..52.1024K. doi:10.1119/1.13782.
Alberteinstein.info
Longair, M. (6 March 2015). "Bending space-time: a commentary on Dyson, Eddington and Davidson (1920) 'A determination of the deflection of light by the Sun's gravitational field'". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2039): 20140287. Bibcode:2015RSPTA.37340287L. doi:10.1098/rsta.2014.0287. PMC 4360090. PMID 25750149.

Kaiser, David (March 2012). "A Tale of Two Textbooks: Experiments in Genre". Isis. 103 (1): 126–138. doi:10.1086/664983. hdl:1721.1/82907. PMID 22655343.

Further reading

Hawking, Stephen, ed. (2002). On the shoulders of giants : the great works of physics and astronomy. With commentary by Stephen Hawking. Philadelphia: Running Press. ISBN 978-0-7624-1348-5.
Magie, William Francis (1963). A source book in physics. Harvard University Press. ISBN 978-0-674-82365-5.
Pickover, Clifford A. (2008). Archimedes to Hawking : laws of science and the great minds behind them. Oxford: Oxford University Press. ISBN 978-0-19-533611-5.
Shamos, Morris H., ed. (1987). Great experiments in physics : firsthand accounts from Galileo to Einstein (Republication ed.). New York: Dover Publications. ISBN 978-0-486-25346-6.

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License