Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.

Irrotational barotropic flow

Take the simple example of a barotropic, inviscid vorticity-free fluid.

Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by

\( {\displaystyle \{\varphi ({\vec {x}}),\rho ({\vec {y}})\}=\delta ^{d}({\vec {x}}-{\vec {y}})} \)

and the Hamiltonian by:

\( {\displaystyle H=\int \mathrm {d} ^{d}x{\mathcal {H}}=\int \mathrm {d} ^{d}x\left({\frac {1}{2}}\rho (\nabla \varphi )^{2}+e(\rho )\right),} \)

where e is the internal energy density, as a function of ρ. For this barotropic flow, the internal energy is related to the pressure p by:

\( e''={\frac {1}{\rho }}p', \)

where an apostrophe ('), denotes differentiation with respect to ρ.

This Hamiltonian structure gives rise to the following two equations of motion:

\( {\begin{aligned}{\frac {\partial \rho }{\partial t}}&=+{\frac {\partial {\mathcal {H}}}{\partial \varphi }}=-\nabla \cdot (\rho {\vec {u}}),\\{\frac {\partial \varphi }{\partial t}}&=-{\frac {\partial {\mathcal {H}}}{\partial \rho }}=-{\frac {1}{2}}{\vec {u}}\cdot {\vec {u}}-e',\end{aligned}} \)

where \( {\vec {u}}\ {\stackrel {{\mathrm {def}}}{=}}\ \nabla \varphi \) is the velocity and is vorticity-free. The second equation leads to the Euler equations:

\( {\frac {\partial {\vec {u}}}{\partial t}}+({\vec {u}}\cdot \nabla ){\vec {u}}=-e''\nabla \rho =-{\frac {1}{\rho }}\nabla {p} \)

after exploiting the fact that the vorticity is zero:

\( \nabla \times {\vec {u}}={\vec {0}}. \)

As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of Nambu mechanics[1][2]

See also

Luke's variational principle
Hamiltonian field theory


Nevir & Blender 1993

Blender & Badin 2015

Badin, Gualtiero; Crisciani, Fulvio (2018). Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws -. Springer. p. 218. doi:10.1007/978-3-319-59695-2. ISBN 978-3-319-59694-5.
Morrison, P.J. (2006). "Hamiltonian Fluid Mechanics" (PDF). In Elsevier (ed.). Encyclopedia of Mathematical Physics. 2. Amsterdam. pp. 593–600.
Morrison, P. J. (April 1998). "Hamiltonian Description of the Ideal Fluid" (PDF). Reviews of Modern Physics. Austin, Texas. 70 (2): 467–521. Bibcode:1998RvMP...70..467M. doi:10.1103/RevModPhys.70.467.
R. Salmon (1988). "Hamiltonian Fluid Mechanics". Annual Review of Fluid Mechanics. 20: 225–256. Bibcode:1988AnRFM..20..225S. doi:10.1146/annurev.fl.20.010188.001301.
Shepherd, Theodore G (1990). "Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics". Advances in Geophysics Volume 32. Advances in Geophysics. 32. pp. 287–338. Bibcode:1990AdGeo..32..287S. doi:10.1016/S0065-2687(08)60429-X. ISBN 9780120188321.
Swaters, Gordon E. (2000). Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Boca Raton, Florida: Chapman & Hall/CRC. p. 274. ISBN 1-58488-023-6.
Nevir, P.; Blender, R. (1993). "A Nambu representation of incompressible hydrodynamics using helicity and enstrophy". J. Phys. A. 26 (22): 1189–1193. Bibcode:1993JPhA...26L1189N. doi:10.1088/0305-4470/26/22/010.
Blender, R.; Badin, G. (2015). "Hydrodynamic Nambu mechanics derived by geometric constraints". J. Phys. A. 48 (10): 105501. arXiv:1510.04832. Bibcode:2015JPhA...48j5501B. doi:10.1088/1751-8113/48/10/105501.

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License