- Art Gallery -

An Er:YAG laser (erbium-doped yttrium aluminium garnet laser, erbium YAG laser) is a solid-state laser whose active laser medium is erbium-doped yttrium aluminium garnet (Er:Y3Al5O12). Er:YAG lasers typically emit light with a wavelength of 2940 nm, which is infrared light.


The output of an Er:YAG laser is strongly absorbed by water. As a result, they are widely used for medical procedures in which deep penetration of tissues is not desired.

Erbium-YAG lasers have been used for laser resurfacing of human skin.[1] Example uses include treating acne scarring, deep rhytides, and melasma. In addition to being absorbed by water, the output of Er:YAG lasers is also absorbed by hydroxyapatite, which makes it a good laser for cutting bone as well as soft tissue. Bone surgery applications have been found in oral surgery, dentistry, implant dentistry, and otolaryngology.[2][3][4][5] Er:YAG lasers are safer for the removal of warts than carbon dioxide lasers, because human papillomavirus (HPV) DNA is not found in the laser plume.[6] Er:YAG lasers can be used in laser aided cataract surgery but owing to its water absorbable nature Nd:YAG is preferred more.[7]

Erbium YAG dental lasers are effective for removing tooth decay atraumatically,[8] often without the need for local anesthetic to numb the tooth. Eliminating the vibration of the dental drill removes the risk of causing microfractures in the tooth. When used initially at low power settings, the laser energy has a sedative effect on the nerve, resulting in the ability to subsequently increase the power without creating the sensation of pain in the tooth. Additional benefits are disinfection of the surface of the dentin and enamel prior to bonding the filling, and etching the surface to increase surface area for improved bonding adhesion.

Teikemeier G, Goldberg DJ. "Skin resurfacing with the erbium:YAG laser". Dermatol. Surg. 1997;23:685–687.
Bornstein E. "Proper use of Er:YAG lasers and contact sapphire tips when cutting teeth and bone: scientific principles and clinical application". Dent. Today 2004;23:84, 86–89; quiz 89
Stubinger S, Nuss K, Landes C, von Rechenberg B, Sader R. "Harvesting of intraoral autogenous block grafts from the chin and ramus region: preliminary results with a variable square pulse Er:YAG laser". Lasers Surg Med 2008;40:312–318.
Schwarz F, Olivier W, Herten M, Sager M, Chaker A, Becker J. "Influence of implant bed preparation using an Er:YAG laser on the osseointegration of titanium implants: a histomorphometrical study in dogs". J. Oral Rehabil. 2007;34:273–281.
Lewandrowski KU, Lorente C, Schomacker KT, Flotte TJ, Wilkes JW, Deutsch TF. "Use of the Er:YAG laser for improved plating in maxillofacial surgery: comparison of bone healing in laser and drill osteotomies". Lasers Surg Med 1996;19:40–45.
Hughes, P.S.H.; Hughes, A.P. (March 1998). "Absence of human papillomavirus DNA in the plume of erbium:YAG laser-treated warts". Journal of the American Academy of Dermatology. 38 (3): 426–428. doi:10.1016/S0190-9622(98)70500-6. PMID 9520024.
Khurana, Aruj. Comprehensive Ophthalmology (5th ed.).

Sasaki, Katia M.; Aoki, Akira; Ichinose, Shizuko; Yoshino, Toshiaki; Yamada, Sachiko; Ishikawa, Isao (June 2002). "Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers". Journal of Periodontology. 73 (6): 643–652. doi:10.1902/jop.2002.73.6.643. ISSN 0022-3492. PMID 12083538.

Further reading

Apitz, I.; Vogel, A. (2005). "Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin". Applied Physics A. 81 (2): 329–338. Bibcode:2005ApPhA..81..329A. doi:10.1007/s00339-005-3213-5. ISSN 0947-8396.

External links

DOE about Er-YAG lasers 1994


Solid-state lasers
Distinct subtypes
Semiconductor laser
Yttrium aluminium garnet

Nd:YAG laser Er:YAG laser Nd:Cr:YAG Yb:YAG Nd:Ce:YAG Ho:YAG Dy:YAG Sm:YAG Tb:YAG Ce:YAG Ce:Gd:YAG Gd:YAG


Nd:glass Ytterbium glass 147Pm+3:Glass Er:Yb:Glass

Other gain media

Ruby laser Yttrium iron garnet (YIG) Terbium gallium garnet (TGG) Ti:sapphire laser Solid-state dye laser (SSDL/SSOL/SSDPL) Yttrium lithium fluoride (YLF)
Neodymium-doped yttrium lithium fluoride (Nd:YLF) Yttrium orthovanadate (YVO4)
Neodymium-doped yttrium orthovanadate (Nd:YVO4) Yttrium calcium oxoborate (YCOB)
Nd:YCOB laser Ce:LiSAF Ce:LiCAF Cr:ZnSe U:CaF2 Sm:CaF2 Yb:SFAP


Diode-pumped solid-state laser (DPSSL) Fiber laser Figure-8 laser Disk laser F-center laser

Specific lasers

Trident laser ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System) Nova (laser) Cyclops laser Janus laser Argus laser Shiva laser HiPER Laboratory for Laser Energetics Laser Mégajoule LULI2000 Mercury laser ISKRA-6 Vulcan laser


Mode-locking Energy transfer upconversion Solar-pumped laser

Laser types: Solid-state
Semiconductor Dye Gas
Chemical Excimer Ion Metal Vapor

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License