- Art Gallery -

 

.

Στη στοιχειώδη γεωμετρία, ένα πολύτοπο είναι ένα γεωμετρικό αντικείμενο με επίπεδες πλευρές, που υπάρχει σε οποιοδήποτε γενικό αριθμό διαστάσεων. Ένα πολύγωνο είναι ένα πολύτοπο σε δύο διαστάσεις, ένα πολύεδρο σε τρεις διαστάσεις,[1] και ούτω καθεξής σε υψηλότερες διαστάσεις (όπως ένα πολύχωρο σε τέσσερις διαστάσεις). Μερικές θεωρίες γενικεύουν περαιτέρω την ιδέα να περιλαμβάνει τέτοια αντικείμενα, όπως τα αφηρημένα πολύτοπα και τα άπειρα ή απεριόριστα πολύτοπα (απειρότοποι και ψηφοθετήσεις).

Όταν αναφερόμαστε σε μία ν-διαστάσεων γενίκευση, χρησιμοποιείται ο όρος ν-πολύτοπο. Για παράδειγμα, ένα πολύγωνο είναι ένα 2-πολύτοπο, ένα πολύεδρο είναι ένα 3-πολύτοπο, ένα πολύχωρο είναι ένα 4-πολύτοπο, και ούτω καθεξής.

Στη σύγχρονη εποχή, τα πολύτοπα, και οι σχετικές με αυτά έννοιες, έχουν βρεθεί σε πολλές σημαντικές εφαρμογές σε ποικίλους τομείς, όπως στα γραφικά υπολογιστών, τη βελτιστοποίηση των μηχανών αναζήτησης, την κοσμολογία και πολλούς άλλους τομείς.

Ετυμολογία

Ο όρος επινοήθηκε το 1882, από τον μαθηματικό Hoppe, ο οποίος τον έγραψε στη γερμανική γλώσσα με τη χρήση των ελληνικών λέξεων "πολύ" και "τόπος". Στη συνέχεια γίνεται διεθνής όρος καθώς εισάγεται στην αγγλική γλώσσα όπου ο όρος παρουσιάστηκε στους μαθηματικούς από την Αλίσια Μπουλ Στοττ, κόρη του διάσημου μελετητή της λογικής Τζορτζ Μπουλ.[2]
Δείτε επίσης

Κανονικό πολύτοπο
Ημικανονικό πολύτοπο
Κυρτό πολύτοπο
Ενιαίο πολύτοπο
Αφηρημένο πολύτοπο

Παραπομπές

Κάποιοι συγγραφείς κάνουν χρήση των εννοιών πολύτοπο και πολύεδρο με διαφορετική σημασία, ως εξής: "ένα πολύεδρο είναι το γενικό αντικείμενο σε οποιαδήποτε διάσταση (το οποίο αναφέρεται ως πολύτοπο σε αυτό το λήμμα της Βικιπαίδειας) και με το πολύτοπο εννοούν ένα οριοθετημένο πολύεδρο." Π.χ. ο ορισμός 2.2 των Nemhauser & Wolsey στο "Integer and Combinatorial Optimization", ISBN 978-0471359432 (1999).

A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam (1910).

Πηγές

Coxeter, Harold Scott MacDonald (1973), Regular Polytopes, New York: Dover Publications, ISBN 978-0-486-61480-9.
Grünbaum, Branko (2003), Kaibel, Volker; Klee, Victor; Ziegler, Günter M., επιμ., Convex polytopes (2η έκδοση), New York & London: Springer-Verlag, ISBN 0-387-00424-6.
Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, 152, Berlin & New York: Springer-Verlag.

Εξωτερικοί σύνδεσμοι

Weisstein, Eric W., "Polytope" από το MathWorld.
Regular and semi-regular convex polytopes a short historical overview.
"Math will rock your world" – Εφαρμογή πολυτόπων σε μια βάση δεδομένων από άρθρα που χρησιμοποιούνται για την υποστήριξη προσαρμοσμένης ροής ειδήσεων μέσω του Διαδικτύου – (Business Week Online).

Εγκυκλοπαίδεια Μαθηματικών

Κόσμος

Αλφαβητικός κατάλογος

Hellenica World - Scientific Library

Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License