In mathematics, in particular algebraic topology, a p-compact group is (roughly speaking) a space that is a homotopical version of a compact Lie group, but with all the structure concentrated at a single prime p. This concept was introduced by Dwyer and Wilkerson.[1] Subsequently the name homotopy Lie group has also been used.


Examples include the p-completion of a compact and connected Lie group, and the Sullivan spheres, i.e. the p-completion of a sphere of dimension

2n − 1,

if n divides p − 1.

The classification of p-compact groups states that there is a 1-1 correspondence between connected p-compact groups, and root data over the p-adic integers. This is analogous to the classical classification of connected compact Lie groups, with the p-adic integers replacing the rational integers.

Homotopy Lie Groups: A Survey (PDF)
Homotopy Lie Groups and Their Classification (PDF)


W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License