In mathematics, an Igusa group or Igusa subgroup is a subgroup of the Siegel modular group defined by some congruence conditions. They were introduced by Igusa (1964).

Definition

The symplectic group Sp_{2g}(**Z**) consists of the matrices

\( {\begin{pmatrix}A&B\\C&D\end{pmatrix}} \)

such that ABt and CDt are symmetric, and ADt − CBt = I (the identity matrix).

The Igusa group Γg(n,2n) = Γn,2n consists of the matrices

\( {\begin{pmatrix}A&B\\C&D\end{pmatrix}} \)

in Sp2g(Z) such that B and C are congruent to 0 mod n, A and D are congruent to the identity matrix I mod n, and the diagonals of ABt and CDt are congruent to 0 mod 2n. We have Γg(2n)⊆ Γg(n,2n) ⊆ Γg(n) where Γg(n) is the subgroup of matrices congruent to the identity modulo n.

References

Igusa, Jun-ichi (1964), "On the graded ring of theta-constants", Amer. J. Math., 86: 219–246, doi:10.2307/2373041, MR 0164967

Undergraduate Texts in Mathematics

Graduate Studies in Mathematics

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License