- Art Gallery -

 

.

Τέλειος λέγεται ένας φυσικός αριθμός όταν το άθροισμα των διαιρετών του, εκτός του αριθμού, είναι ίσο τον αριθμό δηλ. ο n είναι τέλειoς αν και μόνο αν σ(n) = 2n.

Ο μικρότερος τέλειος αριθμός είναι ο 6. Οι διαιρέτες του 6 είναι οι 1, 2, 3 και το άθροισμα αυτών είναι ίσο με 6 (1+2+3=6). Άλλοι τέλειοι αριθμοί είναι οι 28 = 1 + 2 + 4 + 7 + 14, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 και ο 8128. Αυτοί είναι και οι μόνοι γνωστοί τέλειοι κατά την αρχαιότητα.

Ο επόμενος τέλειος αριθμός είναι ο 33550336 και ακολουθούν οι 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216.

Άρτιοι τέλειοι αριθμοί

Ο Ευκλείδης ανακάλυψε ότι οι τέσσερις πρώτοι τέλειοι αριθμοί παράγονται από τον τύπο 2n−1(2n − 1):

Για n = 2:   21(22 − 1) = 6
Για n = 3:   22(23 − 1) = 28
Για n = 5:   24(25 − 1) = 496
Για n = 7:   26(27 − 1) = 8128

Παρατηρώντας ότι τα n στον παραπάνω τύπο είναι πρώτοι αριθμοί, ο Ευκλείδης απέδειξε ότι ο τύπος 2n−1(2n − 1) δίνει έναν άρτιο τέλειο αριθμό όταν το 2n − 1 είναι πρώτος.

Οι Αρχαίοι Έλληνες μαθηματικοί έκαναν και άλλες εικασίες για τους τέλειους αριθμούς από τις οποίες όμως οι περισσότερες αποδείχθηκαν λανθασμένες.

Είναι εύκολο να δειχθεί ότι αν ο \( 2^n-1 \) είναι πρώτος, τότε ο n είναι πρώτος, χωρίς όμως να ισχύει και το αντίστροφο. Οι πρώτοι αριθμοί της μορφής \( 2^n-1 \) είναι γνωστοί ως πρώτοι του Μερσέν (Mersenne), από το όνομα του Μαρίν Μερσέν που έζησε τον 17ο αιώνα και τους μελέτησε πρώτος.

Δύο χιλιάδες χρόνια μετά τον Ευκλείδη, ο Όιλερ (Euler) απέδειξε ότι ο τύπος 2n−1(2n − 1) μας δίνει όλους τους άρτιους τέλειους αριθμούς. Το αποτέλεσμα αυτό είναι γνωστό σαν Θεώρημα Ευκλείδη-Όιλερ.

Μέχρι σήμερα, με τη βοήθεια ηλεκτρονικών υπολογιστών, είναι γνωστοί 48 πρώτοι του Μερσέν και άρα και 48 άρτιοι τέλειοι αριθμοί. Ο μεγαλύτερος από αυτούς - ο 48ος - αποτελείται από 17.425.170 ψηφία. Δεν είναι γνωστό αν υπάρχουν άπειροι πρώτοι του Μερσέν. Το σύστημα GIMPS ασχολείται με την εύρεση πρώτων του Μερσέν.


Περιττοί τέλειοι αριθμοί

Είναι άγνωστο αν υπάρχουν περιττοί τέλειοι αριθμοί. Υπάρχουν ωστόσο μια σειρά αποτελέσματα χωρίς όμως οι μαθηματικοί να έχουν φτάσει στην απάντηση της ερώτησης αν υπάρχουν ή όχι.

Τα μέχρι σήμερα γνωστά αποτελέσματα μας λένε ότι κάθε περιττός τέλειος αριθμός N πρέπει να είναι της μορφής 12m + 1 ή 36m + 9 και να ικανοποιεί τις ακόλουθες ιδιότητες:

N είναι της μορφής

\( N=q^{\alpha} p_1^{2e_1} \ldots p_k^{2e_k}, \)

όπου \(q, p_1, …, p_k \) είναι διαφορετικοί πρώτοι και q ≡ α ≡ 1 (mod 4) (Όιλερ).

Στην παραπάνω παραγοντοποίηση, ο k είναι τουλάχιστον 8, και ο k είναι τουλάχιστον 11 αν το 3 δεν διαιρεί το N (Nielsen 2006).
Στην παραπάνω παραγοντοποίηση, ένας τουλάχιστον από τους \( e_1, e_2, \ldots e_k \) είναι μεγαλύτερος από 1. (Steuerwald 1937)
Ο μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 108 (Takeshi Goto and Yasuo Ohno, 2006).
Ο δεύτερος μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 104 , και ο τρίτος μεγαλύτερος πρώτος είναι μεγαλύτερος από 100 (Iannucci 1999, 2000).
Ο N έχει τουλάχιστον 75 πρώτους στην παραγοντοποίησή του, υπολογίζοντας κάθε μια από τις 2ek επαναλήψεις του pk χωριστά (Kevin Hare 2005).
Ο N είναι μικρότερος από \( 2^{4^{n}} \) όπου n είναι ο αριθμός των διακεκριμένων πρώτων που τον διαιρούν (οπότε n = k + 1 όπου k όπως πριν) (Nielsen 2003).

Αν ο N υπάρχει, τότε είναι μεγαλύτερος από 10500 σύμφωνα με τους υπoλογισμούς του [1].
Παραπομπές

Takeshi Goto and Yasuo Ohno, Odd perfect numbers have a prime factor exceeding 108. Preprint, 2006. Διαθέσιμο εδώ: "Largest prime factor of an odd perfect number".
Kevin Hare, New techniques for bounds on the total number of prime factors of an odd perfect number. Preprint, 2005. Διαθέσιμο εδώ: [2].
Douglas E. Iannucci, "The second largest prime divisor of an odd perfect number exceeds ten thousand," Mathematics of Computation, volume 68, issue 228, pages 1749–1760, 1999.
Douglas E. Iannucci, "The third largest prime divisor of an odd perfect number exceeds one hundred," Mathematics of Computation, volume 69, issue 230, pages 867–879, 2000.
Pace P. Nielsen, "An upper bound for odd perfect numbers," Integers, vol. 3, A14, 9 pp. (electronic), 2003.
Pace P. Nielsen, Odd perfect numbers have at least nine different prime factors, arXiv:math.NT/0602485, 2006.
R. Steuerwald, Verscharfung einen notwendigen Bedingung fur die Existenz einen ungeraden vollkommenen Zahl, S.-B. Bayer. Akad. Wiss. 1937, 69–72.

Εξωτερικοί σύνδεσμοι

David Moews: Perfect, amicable and sociable numbers
Perfect numbers - History and Theory
Perfect Number - from MathWorld
List of Perfect Numbers at the On-Line Encyclopedia of Integer Sequences
List of known Perfect Numbers All known perfect numbers are here.
OddPerfect.org A projected distributed computing project to search for odd perfect numbers.

Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License