In graph theory, the Hadwiger conjecture states that if G is loopless and has no \( K_{t} \_ minor then its chromatic number satisfies \( {\displaystyle \chi (G)<t} \). It is known to be true for \( {\displaystyle 1\leq t\leq 6} \). The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.[1]

In more detail, if all proper colorings of an undirected graph G use k or more colors, then one can find k disjoint connected subgraphs of G such that each subgraph is connected by an edge to each other subgraph. Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex produces a complete graph Kk on k vertices as a minor of G.

This conjecture, a far-reaching generalization of the four-color problem, was made by Hugo Hadwiger in 1943 and is still unsolved. Bollobás, Catlin & Erdős (1980) call it “one of the deepest unsolved problems in graph theory.”[2]

Equivalent forms

An equivalent form of the Hadwiger conjecture (the contrapositive of the form stated above) is that, if there is no sequence of edge contractions (each merging the two endpoints of some edge into a single supervertex) that brings a graph G to the complete graph Kk, then G must have a vertex coloring with k − 1 colors.

Note that, in a minimal k-coloring of any graph G, contracting each color class of the coloring to a single vertex will produce a complete graph Kk. However, this contraction process does not produce a minor of G because there is (by definition) no edge between any two vertices in the same color class, thus the contraction is not an edge contraction (which is required for minors). Hadwiger's conjecture states that there exists a different way of properly edge contracting sets of vertices to single vertices, producing a complete graph Kk, in such a way that all the contracted sets are connected.

If Fk denotes the family of graphs having the property that all minors of graphs in Fk can be (k − 1)-colored, then it follows from the Robertson–Seymour theorem that Fk can be characterized by a finite set of forbidden minors. Hadwiger's conjecture is that this set consists of a single forbidden minor, Kk.

The Hadwiger number h(G) of a graph G is the size k of the largest complete graph Kk that is a minor of G (or equivalently can be obtained by contracting edges of G). It is also known as the contraction clique number of G.[2] The Hadwiger conjecture can be stated in the simple algebraic form χ(G) ≤ h(G) where χ(G) denotes the chromatic number of G.

Special cases and partial results

The case k = 2 is trivial: a graph requires more than one color if and only if it has an edge, and that edge is itself a K2 minor. The case k = 3 is also easy: the graphs requiring three colors are the non-bipartite graphs, and every non-bipartite graph has an odd cycle, which can be contracted to a 3-cycle, that is, a K3 minor.

In the same paper in which he introduced the conjecture, Hadwiger proved its truth for k ≤ 4. The graphs with no K4 minor are the series-parallel graphs and their subgraphs. Each graph of this type has a vertex with at most two incident edges; one can 3-color any such graph by removing one such vertex, coloring the remaining graph recursively, and then adding back and coloring the removed vertex. Because the removed vertex has at most two edges, one of the three colors will always be available to color it when the vertex is added back.

The truth of the conjecture for k = 5 implies the four color theorem: for, if the conjecture is true, every graph requiring five or more colors would have a K5 minor and would (by Wagner's theorem) be nonplanar. Klaus Wagner proved in 1937 that the case k = 5 is actually equivalent to the four color theorem and therefore we now know it to be true. As Wagner showed, every graph that has no K5 minor can be decomposed via clique-sums into pieces that are either planar or an 8-vertex Möbius ladder, and each of these pieces can be 4-colored independently of each other, so the 4-colorability of a K5-minor-free graph follows from the 4-colorability of each of the planar pieces.

Robertson, Seymour & Thomas (1993) proved the conjecture for k = 6, also using the four color theorem; their paper with this proof won the 1994 Fulkerson Prize. It follows from their proof that linklessly embeddable graphs, a three-dimensional analogue of planar graphs, have chromatic number at most five.[3] Due to this result, the conjecture is known to be true for k ≤ 6, but it remains unsolved for all k > 6.

For k = 7, some partial results are known: every 7-chromatic graph must contain either a K7 minor or both a K4,4 minor and a K3,5 minor.[4]

Every graph G has a vertex with at most O(h(G) √log h(G)) incident edges,[5] from which it follows that a greedy coloring algorithm that removes this low-degree vertex, colors the remaining graph, and then adds back the removed vertex and colors it, will color the given graph with O(h(G) √log h(G)) colors.

Van der Zypen (2012) has constructed a graph H with χ(H) = ω but no Kω minor, demonstrating that the conjecture does not hold for graphs with countably infinite coloring number.

Generalizations

György Hajós conjectured that Hadwiger's conjecture could be strengthened to subdivisions rather than minors: that is, that every graph with chromatic number k contains a subdivision of a complete graph Kk. Hajós' conjecture is true for k ≤ 4, but Catlin (1979) found counterexamples to this strengthened conjecture for k ≥ 7; the cases k = 5 and k = 6 remain open.[6] Erdős & Fajtlowicz (1981) observed that Hajós' conjecture fails badly for random graphs: for any ε > 0, in the limit as the number of vertices, n, goes to infinity, the probability approaches one that a random n-vertex graph has chromatic number ≥ (1/2 − ε)n / log2 n, and that its largest clique subdivision has at most cn1/2 vertices for some constant c. In this context, it is worth noting that the probability also approaches one that a random n-vertex graph has Hadwiger number greater than or equal to its chromatic number, so the Hadwiger conjecture holds for random graphs with high probability; more precisely, the Hadwiger number is with high probability a constant times n/√log n.[2]

Borowiecki (1993) asked whether Hadwiger's conjecture could be extended to list coloring. For k ≤ 4, every graph with list chromatic number k has a k-vertex clique minor. However, the maximum list chromatic number of planar graphs is 5, not 4, so the extension fails already for K5-minor-free graphs.[7] More generally, for every t ≥ 1, there exist graphs whose Hadwiger number is 3t + 1 and whose list chromatic number is 4t + 1.[8]

Gerards and Seymour conjectured that every graph G with chromatic number k has a complete graph Kk as an odd minor. Such a structure can be represented as a family of k vertex-disjoint subtrees of G, each of which is two-colored, such that each pair of subtrees is connected by a monochromatic edge. Although graphs with no odd Kk minor are not necessarily sparse, a similar upper bound holds for them as it does for the standard Hadwiger conjecture: a graph with no odd Kk minor has chromatic number χ(G) = O(k √log k).[9]

By imposing extra conditions on G, it may be possible to prove the existence of larger minors than Kk. One example is the snark theorem, that every cubic graph requiring four colors in any edge coloring has the Petersen graph as a minor, conjectured by W. T. Tutte and announced to be proved in 2001 by Robertson, Sanders, Seymour, and Thomas.[10]

Notes

Diestel, Reinhard, 1959- Verfasser. (30 June 2017). Graph theory. ISBN 9783662536216. OCLC 1048203362.

Bollobás, Catlin & Erdős (1980).

Nešetřil & Thomas (1985).

The existence of either a K7 or K3,5 minor was shown by Ken-ichi Kawarabayashi, and Kawarabayashi & Toft (2005) proved the existence of either a K7 or K4,4 minor.

Kostochka (1984). The letter O in this expression invokes big O notation.

Yu & Zickfeld (2006).

Voigt (1993); Thomassen (1994).

Barát, Joret & Wood (2011).

Geelen et al. (2006); Kawarabayashi (Journal of Combinatorial Theory, Series B, Volume 99, Issue 1, January 2009, Pages 20-29).

Pegg, Ed, Jr. (2002), "Book Review: The Colossal Book of Mathematics" (PDF), Notices of the American Mathematical Society, 49 (9): 1084–1086, Bibcode:2002ITED...49.1084A, doi:10.1109/TED.2002.1003756.

References

Barát, János; Joret, Gwenaël; Wood, David R. (2011), "Disproof of the list Hadwiger conjecture", The Electronic Journal of Combinatorics, 18 (1): P232, arXiv:1110.2272, doi:10.37236/719, S2CID 13822279.

Bollobás, B.; Catlin, P. A.; Erdős, Paul (1980), "Hadwiger's conjecture is true for almost every graph" (PDF), European Journal of Combinatorics, 1 (3): 195–199, doi:10.1016/s0195-6698(80)80001-1.

Borowiecki, Mieczyslaw (1993), "Research problem 172", Discrete Mathematics, 121 (1–3): 235–236, doi:10.1016/0012-365X(93)90557-A.

Catlin, P. A. (1979), "Hajós's graph-colouring conjecture: variations and counterexamples", Journal of Combinatorial Theory, Series B, 26 (2): 268–274, doi:10.1016/0095-8956(79)90062-5.

Erdős, Paul; Fajtlowicz, Siemion (1981), "On the conjecture of Hajós", Combinatorica, 1 (2): 141–143, doi:10.1007/BF02579269, S2CID 1266711.

Geelen, Jim; Gerards, Bert; Reed, Bruce; Seymour, Paul; Vetta, Adrian (2006), "On the odd-minor variant of Hadwiger's conjecture", Journal of Combinatorial Theory, Series B, 99 (1): 20–29, doi:10.1016/j.jctb.2008.03.006.

Hadwiger, Hugo (1943), "Über eine Klassifikation der Streckenkomplexe", Vierteljschr. Naturforsch. Ges. Zürich, 88: 133–143.

Kawarabayashi, Ken-ichi, Minors in 7-chromatic graphs, Preprint.

Kawarabayashi, Ken-ichi (2009), "Note on coloring graphs without odd Kk-minors", Journal of Combinatorial Theory, Series B, 99 (4): 728, doi:10.1016/j.jctb.2008.12.001. Journal of Combinatorial Theory, Series B, in press.

Kawarabayashi, Ken-ichi; Toft, Bjarne (2005), "Any 7-chromatic graph has K7 or K4,4 as a minor", Combinatorica, 25 (3): 327–353, doi:10.1007/s00493-005-0019-1, S2CID 41451753.

Kostochka, A. V. (1984), "Lower bound of the Hadwiger number of graphs by their average degree", Combinatorica, 4 (4): 307–316, doi:10.1007/BF02579141, S2CID 15736799.

Nešetřil, Jaroslav; Thomas, Robin (1985), "A note on spatial representation of graphs", Commentationes Mathematicae Universitatis Carolinae, 26 (4): 655–659, archived from the original on 2011-07-18, retrieved 2010-08-06.

Robertson, Neil; Seymour, Paul; Thomas, Robin (1993), "Hadwiger's conjecture for K6-free graphs" (PDF), Combinatorica, 13 (3): 279–361, doi:10.1007/BF01202354, S2CID 9608738.

Thomassen, Carsten (1994), "Every planar graph is 5-choosable", Journal of Combinatorial Theory, Series B, 62 (1): 180–181, doi:10.1006/jctb.1994.1062, MR 1290638.

Van der Zypen, Dominic (2012), Hadwiger's conjecture for graphs with infinite chromatic number, arXiv:1212.3093, Bibcode:2012arXiv1212.3093V.

Voigt, Margit (1993), "List colourings of planar graphs", Discrete Mathematics, 120 (1–3): 215–219, doi:10.1016/0012-365X(93)90579-I, MR 1235909.

Wagner, Klaus (1937), "Über eine Eigenschaft der ebenen Komplexe", Mathematische Annalen, 114: 570–590, doi:10.1007/BF01594196, S2CID 123534907.

Yu, Xingxing; Zickfeld, Florian (2006), "Reducing Hajós' 4-coloring conjecture to 4-connected graphs", Journal of Combinatorial Theory, Series B, 96 (4): 482–492, doi:10.1016/j.jctb.2005.10.001.

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License